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Abstract

A scattering problem due to an object and a plane incident wave in an elastic layered half space is presented in this

paper. The complete eigenfunction expansion form of the Green�s function developed by the author and the boundary
integral equation method are introduced into the analysis. First, the complete eigenfunction expansion form of the

Green�s function is investigated for its application to the scattering problem. A comprehensive explanation is also given

for the fact that the complex Rayleigh wave modes exhibit standing waves. Next, a method for the analysis of scattering

waves by means of the Green�s function is presented. The advantage of the present method is that the formulation itself
is independent of the number of layers and the scattering waves can be decomposed into the modes for the spectra

defined for the layered medium. Several numerical calculations are performed to examine the efficiency of the present

method as well as the properties of the scattering waves. According to the numerical results, the complete eigenfunction

expansion form of the Green�s function provides accurate values for application to a boundary element analysis. The
spectral structure and radiation patterns of the scattering wave are presented and investigated. The differences in di-

rectionality can be found from the radiation patterns of the scattering waves decomposed into the modes for the

spectra.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analysis of scattering waves due to a scattering object and a plane incident wave in an elastic layered

half space is an important issue in the identification of energy resources, site characterization and earth-

quake engineering. The analysis becomes possible by means of the Green�s function for an elastic layered
half space and the boundary integral equation method. Few researches have addressed the scattering

problem in a layered medium (for example, Touhei, 2000), while a number of projects have investigated
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Green�s function for an elastic layered half space. This is because analysis of the scattering problem is

difficult due to the complicated representation of Green�s function for an elastic layered medium.
Techniques to investigate Green�s functions for an elastic layered medium include the reflectivity method

(Fuchs and M€uuller, 1971), the discrete wavenumber method (Bouchon and Aki, 1977; Bouchon, 1979–
1982), the normal mode superposition method (Harvey, 1981), and Green�s function represented by leaky
modes (Haddon, 1984, 1986, 1987). In addition, a method without the problem of growing exponential

terms in Green�s function was presented by Kenet and Kerry (1979) and the complex poles in the per-
missible sheets for Green�s function were investigated by Watson (1972). A significant amount of literature

has also been published on the scattering problem. The effects of cracks on scattering waves in a three-

dimensional half space were analyzed by Budreck and Achenbach (1989) and the application of integral

equation methods to the scattering and inverse scattering problems were shown by Colton and Kress (1983,

1998).
The simplification of Green�s function for a layered medium would greatly assist in its application to the

scattering problem. One technique to simplify the formulation uses the eigenvalue problem for a layered

medium. The reason for this is that it is possible to impose complicated information for a layered medium

(i.e., material properties, layer interface conditions, etc.) on eigenfunctions. The purpose of this paper is to

present the formulation and numerical examples of the analysis of scattering waves in an elastic layered half

space based on the complete eigenfunction expansion form of the Green�s function developed by the author
(Touhei, 2002a). The Green�s function used here is an extension of that represented by the residue terms and
the branch line integrals given by Lamb (1904). The present expression, however, clarifies the mathematical
common frame between the residue terms and the branch line integrals with respect to the eigenfunctions

and energy integrals. The advantage of the complete eigenfunction expansion form of the Green�s function
for the analysis is that the formulation itself becomes independent of the number of layers and the scat-

tering waves can be decomposed into the modes for the spectra for the layered medium, which aids in the

understanding of the properties of the scattering waves.

The work presented here is an extension of the result for an acoustic layered half space (Touhei, 2000,

2002b). However, the extension is not straightforward. In the first part of this paper, the complete eigen-

function expansion form of the Green�s function applicable to the scattering problem is presented. This
form of the Green�s function provides the understanding of the properties of the k�1 singularity of the
horizontal wavefunction for the eigenfunction expansion form of the Green�s function at k ¼ 0, where k is
the wavenumber. Namely, the singularity does not have any effect on the Green�s function. As a result, the
Green�s function is found to be simply expressed by the summation and integration of the eigenfunctions
for the spectra for the layered medium. In addition, a proof is presented for the fact that the complex

Rayleigh wave modes for the Green�s function show standing waves. Next, the boundary integral equation

for the scattering problem is presented based on the Green�s functions. A method for decomposing scat-

tering waves into eigenfunctions for an elastic layered medium is also explained. The decomposition
is performed by interchanging the operation required for the boundary integral with that for composing

the Green�s functions. Finally, several numerical calculations are shown to verify the proposed method as
well as to investigate the spectral structure and radiation patterns of the scattering wave.

2. Definition of the problem

Fig. 1 shows the concept of the scattering problem presented in this paper. A scattering object is em-

bedded in an elastic layered half space and a plane incident wave is propagating in the medium. Scattering

waves are caused by interaction between the object and the plane incident wave. The time factor used to

express progressive waves is set at expðixtÞ, where t is time and x is the circular frequency. Scattering waves
are analyzed here in the frequency domain. As shown in Fig. 1, the vertical axis is denoted by x3. Occa-

3348 T. Touhei / International Journal of Solids and Structures 40 (2003) 3347–3377



sionally, x3 is replaced by z for the sake of convenience. The layer indices attached to the variable h express
the vertical coordinate of the layer interfaces. Note that z ¼ h1ð¼ 0Þ denotes the free surface of the layered
medium.

A cartesian coordinate system is employed for the formulation except for the investigation of the

properties of the Green�s function for the layered medium, in which a cylindrical coordinate system is used.

The variable r is used to express the spatial point. In cases in which a cartesian coordinate system is used,

the components of r are denoted by r ¼ ðx1; x2; x3Þ, where x1 and x2 are the horizontal coordinates. For the
cylindrical coordinate system, the components of r are denoted by r ¼ ðr; h; zÞ.
The propagation of elastic waves in a layered medium due to a plane incident wave is governed by the

following equation:

½ðk þ lÞrr � þlr2 þ qx2	uðrÞ ¼ 0; r ¼ ðx1; x2; x3Þ 2 R2 � Rþ n ðX [ CÞ ð1Þ

where q, k and l denote the mass density and Lam�ee constants respectively, u is the displacement field whose
components are expressed by

u ¼ ðu1; u2; u3ÞT

X is the region inside the scattering object and C is its boundary. Note that the mass density and Lam�ee
constants describing the properties of the layered medium are positive, bounded and piecewise constant

functions with respect to each layer. In the following discussion, the wavenumbers

kT ¼ xffiffiffiffiffiffiffiffi
l=q

p
kL ¼

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 2lÞ=q

p ð2Þ

are used, where kT and kL are the wavenumber for the S and P waves, respectively, which are also the

piecewise constant functions with respect to each layer.
At the interfaces of the layered medium, the displacements and the tractions satisfy the following layer

interface conditions:

Fig. 1. The concept of the scattering problem. A scattering object is embedded in an elastic layered half space and a plane incident wave

propagates in the layered medium.
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uaðx1; x2; hj � �Þ ¼ uaðx1; x2; hj þ �Þ
nðlayÞb sabðx1; x2; hj � �Þ ¼ nðlayÞb sabðx1; x2; hj þ �Þ ðj ¼ 1; 2; . . . ; Þ

ð3Þ

where � is an infinitesimally small positive number, the Greek characters indicate the components of a
vector or tensor for which the summation convention is applied, sab is the component of the stress tensor

and nðlayÞb is that of the normal vector of the layer interface. The component of the stress tensor is given by

sab ¼ kdabocuc þ lðobua þ oaubÞ ð4Þ

where dab denotes the Kronecker delta and o is the partial differential operator whose subscript denotes the

parameter for differentiation. The free boundary condition for the layered medium is expressed by

nðlayÞb sabðx1; x2; h1Þ ¼ 0 ð5Þ

The scattering object here is assumed to be an elastic homogeneous medium. The equation of motion

inside the scattering object is given as

½ðkðiÞ þ lðiÞÞrr � þlðiÞr2 þ qðiÞx2	uðiÞðrÞ ¼ 0; r ¼ ðx1; x2; x3Þ 2 X ð6Þ

where the superscript (i) denotes that the variables are for the inclusion of the scattering object. At the
boundary of the scattering object, the following interface conditions have to be imposed:

uaðrÞ ¼ uðiÞa ðrÞ
nðCÞb sabðrÞ ¼ nðCÞb sðiÞabðrÞ ðr 2 CÞ

ð7Þ

where nðCÞb is the normal vector of unit length at the boundary of the scattering object. The direction of the

normal vector is away from the object.
Analysis of scattering waves becomes possible by solving Eqs. (1) and (6) under the conditions shown in

Eqs. (3), (5) and (7). In this paper, Eqs. (1) and (6) are modified into boundary integral equations, which are

coupled by means of Eq. (7). The complete eigenfunction expansion form of the Green�s function (Touhei,
2002a) is used for Eq. (1), such that Eqs. (3) and (5) are automatically satisfied.

3. Complete eigenfunction expansion form of the Green’s function

The boundary integral equation method requires Green�s functions for both displacement and traction.
The purpose of this section is to present the complete eigenfunction expansion form of Green�s functions
for displacement and traction. For this purpose, the formulation here begins with the direct wavenumber

integral representation of Green�s functions due to single and double sources. The cylindrical coordinate
system is mainly employed here, in which the array of the components for the vector is such that

u ¼ ðuz ur uhÞT ð8Þ

due to the Fourier–Hankel transform shown in Appendix A. The transformation of the coordinate from the

cylindrical to cartesian coordinate systems is also provided for the boundary integral equation.

3.1. The Green’s function represented by the direct wavenumber integral

First of all, we define the Green�s function due to single and double sources in an elastic layered half
space. Let sðr; hÞ and dbðr; hÞ (b ¼ 1; 2) be the single and double source, respectively, which are defined by
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sðr; hÞ ¼ 1
dðrÞ
r

dðhÞ

d1ðr; hÞ ¼
1

�

dðr � �=2Þ
r

dðhÞ
�

� dðr � �=2Þ
r

dðh � pÞ
�

d2ðr; hÞ ¼
1

�

dðr � �=2Þ
r

dðh
�

� p=2Þ � dðr � �=2Þ
r

dðh þ p=2Þ
� ð9Þ

where 1 is the identity matrix, the subscript b for the double source indicates the axis along which the

double source is applied and dð�Þ is the Dirac delta function. The locations of the double sources are ex-
plained by Fig. 2. The Green�s functions due to the sources are defined by

½ðk þ lÞrr � þlr2 þ qx2	GðrÞ ¼ �sðr; hÞdðz� z0Þ
½ðk þ lÞrr � þlr2 þ qx2	TbðrÞ ¼ �dbðr; hÞdðz� z0Þ ðb ¼ 1; 2Þ

ð10Þ

where r 2 R2 � Rþ, G and Tb are the Green�s functions due to the single source and double sources, res-
pectively, and z0 is the vertical coordinate of the source point. Let ŝsmk and d̂dmbk be the Fourier–Hankel
transform of s and db, respectively. According to the Fourier–Hankel transform, ŝs

m
k and d̂dmbk are obtained

from

ŝsmk ¼
Z 2p

0

dh
Z 1

0

rHm
k ðr;�hÞsðr; hÞdr ð11Þ

d̂dmbk ¼
Z 2p

0

dh
Z 1

0

rHm
k ðr;�hÞdbðr; hÞdr ð12Þ

where k is the horizontal wavenumber, m is the circumferential order number and Hm
k is the horizontal

wavefunction defined by Eq. (A.4). It is not difficult to show the followings due to a property of the Bessel

functions:

ŝsmk ¼ 0 ðjmjP 2Þ
d̂dmbk ¼ 0 ðb ¼ 1; 2Þ; ðjmjP 3Þ

ð13Þ

Fig. 2. Dipoles along x1- and x2-axes to calculate the derivative of Green�s function. A cylindrical coordinate system is used to indicate

the positions.
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Therefore, the solutions for Eq. (10) are expressed by the finite series for m that are as follows:

GðrÞ ¼ 1

2p

X1
m¼�1

Z 1

0

kHm
k ðr; hÞ bGGm

k ðzÞdk

TbðrÞ ¼
1

2p

X2
m¼�2

Z 1

0

kHm
k ðr; hÞbTTm

bkðzÞdk ðb ¼ 1; 2Þ
ð14Þ

where bGGm
k and

bTTm
bk are the Fourier–Hankel transform of G and T, respectively, which are obtained from the

following:

Ak
bGGm
k ðzÞ ¼ ŝsmk dðz� z0Þ

Ak
bTTm

bkðzÞ ¼ d̂dmbkdðz� z0Þ ðb ¼ 1; 2Þ
ð15Þ

Note that Ak is the differential operator with components

Ak ¼
ðk þ 2lÞo2z þ qx2 � lk2 �ðk þ lÞkoz 0

ðk þ lÞkoz lo2z þ qx2 � ðk þ 2lÞk2 0

0 0 lo2z þ qx2 � lk2

24 35 ð16Þ

By means of the Green�s function in the wavenumber domain, the solution for Eq. (15) is expressed as
follows:bGGm

k ðzÞ ¼ gkðz; z0Þ̂ssmkbTTm
bkðzÞ ¼ gkðz; z0Þd̂dmbk ðb ¼ 1; 2Þ

ð17Þ

where gkðz; z0Þ is the Green�s function in the wavenumber domain for which the method of composition is
given in Appendix B. Substitution of Eq. (17) into Eq. (14) leads to the following representation of the

solutions of Eq. (10):

GðrÞ ¼ 1

2p

X1
m¼�1

Z 1

0

kHm
k ðr; hÞgkðz; z0Þŝsmk dk

TbðrÞ ¼
1

2p

X2
m¼�2

Z 1

0

kHm
k ðr; hÞgkðz; z0Þd̂d

m
bk dk ðb ¼ 1; 2Þ

ð18Þ

Appendix B shows the asymptotic property of the Green�s function in the wavenumber domain:

gkðz; z0Þ ¼ Oðk�a expð�kjz� z0jÞÞ ða > 0Þ; ðk ! 1Þ ð19Þ
where O is the Landau notation, which ensures the convergence of the wavenumber integrals shown in

Eq. (18) for the case of z 6¼ z0.

3.2. Derivation of the complete eigenfunction expansion form of the Green’s function

The derivation of the complete eigenfunction expansion form of the Green�s function here relies on
properties of the Green�s function in the wavenumber domain. As shown in Appendix B, the permissible
sheets for the Green�s function in the wavenumber domain is the set of the complex wavenumbers such that

C ¼ fk;ReðclÞ > 0 and ReðmlÞ > 0g ð20Þ
and the set of the wavenumbers for the branch cut is

rc ¼ fk;ReðclÞ ¼ 0g [ fk;ReðmlÞ ¼ 0g ð21Þ
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where

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2LðlÞ

q
ml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2T ðlÞ

q ð22Þ

Note that kLðlÞ and kT ðlÞ are the wavenumbers for the P and S waves in the half space, respectively. Some
assumptions are imposed on the properties of the Green�s function in the wavenumber domain in this
paper. These assumptions are as follows:

Assumption 1. Let rp the set of wavenumbers for the poles of gkðz; z0Þ. Then
rp � C ð23Þ

and all poles are simple.

The set rp consists of two parts. One is the normal modes which can be found on the real axis of the
complex wavenumber plane. The other is the complex Rayleigh wave modes representing all the permissible

sheets. The presence of the complex Rayleigh wave modes is acknowledged by the work of Watson (1972),

in which the modes were found from numerical results to be distributed on a line close to the imaginary axis
of the complex wavenumber plane. The next assumption is for the number of the normal modes and the

complex Rayleigh wave modes.

Assumption 2. The number of normal modes is finite, while the complex Rayleigh wave modes are at most

countable.

The derivation of the complete eigenfunction form of the Green�s function due to a single source is
shown here. The treatment for the Green�s function due to a double source is similar, in that the details of
the derivation process are omitted. To obtain the result, replace the horizontal wavefunction with

Hm
k ðr; hÞ ¼ 1

2
½Hmð1Þ

k ðr; hÞ þH
mð2Þ
k ðr; hÞ	 ð24Þ

where H
mð1Þ
k ðr; hÞ and H

mð2Þ
k ðr; hÞ are the horizontal wavefunctions constituted by

Y mðsÞk ðr; hÞ ¼ H ðsÞ
m ðkrÞ expðimhÞ ðs ¼ 1; 2Þ

Note that H ðsÞ
m ð�Þ is the Hankel function of order m. Given the properties of the Hankel function, the

following equations can be established:Z 1

�

kHmð1Þ
k ðr; hÞgkðz; z0Þ̂ssmk dk ¼

Z
M1þC1

kHmð1Þ
k ðr; hÞg#kðz; z0Þŝsmk dk þ 2pi

X
kj2r�

pl

Res
k¼kj

½kHmð1Þ
k ðr; hÞgkðz; z0Þ̂ssmk 	

ð25ÞZ 1

�

kHmð2Þ
k ðr; hÞgkðz; z0Þ̂ssmk dk ¼

Z
N1

kHmð2Þ
k ðr; hÞg#kðz; z0Þŝsmk dk þ

Z
N2þC3þM3

kHmð2Þ
k ðr; hÞg"kðz; z0Þŝsmk dk

� 2pi
X
kj2rpl

Res
k¼kj

½kHmð2Þ
k ðr; hÞgkðz; z0Þŝsmk 	

� 2pi
X
kn2rpn

Res
k¼kn

½kHmð2Þ
k ðr; hÞgkðz; z0Þŝsmk 	 ð26Þ

where the integration paths C1, M1, C3, N1, N2 and M3 are shown in Figs. 3 and 4, rpn is the set of wave-
numbers for the normal modes on the positive real axis, r�

pl is the set of wavenumbers of the complex
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Rayleigh wave modes located in the first quadrant of the complex wavenumber plane and rpl is the set of
those in the fourth quadrant.

Note that integration paths C1 and C3 are necessary due to the singularity of the horizontal wave-
function. A brief sketch of the location of the wavenumbers for those modes is shown in Figs. 3 and 4. The

superscripts " and # for the Green�s function in the wavenumber domain refer to the direction of the wave
propagation in the half space. Namely, " denotes an up-going wave and # a down-going wave.
Next, replace k ¼ �k0 for the integration paths of C1 and M1. The properties of the Bessel functions

(McLachlan, 1961) shown below

Fig. 3. Integral paths for M1, M2, C1 and C2.

Fig. 4. Integral paths for N1, N2, M3 and C3.
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Jmð�krÞ ¼ expðimpÞJmðkrÞ
H ð1Þ
m ð�krÞ ¼ expðiðmþ 1ÞpÞH ð2Þ

m ðkrÞ ðfor � p < Argk < 0Þ
ð27Þ

and the following property of the Green�s function in the wavenumber domain clarified by the propagator
matrix method shown in Appendix B:

g�kðz; z0Þ ¼ diag½1;�1;�1	gkðz; z0Þdiag½1;�1;�1	 ð28Þ
leads to the following equation:Z 1

�

kHmð1Þ
k ðr;hÞgkðz; z0Þŝsmk dk ¼ �

Z
M2þC2

k0Hmð2Þ
k0 ðr;hÞg#k0 ðz; z0Þŝsmk0 dk0 þ 2pi

X
kj2rpl

Res
k¼kj

½kHmð1Þ
k ðr;hÞgkðz; z0Þŝsmk 	

ð29Þ
where the integration paths C2 and M2 are shown in Fig. 3.

The complete eigenfunction expansion form of the Green�s function is obtained by adding Eqs. (26) and
(29). For this operation, let us define the set of wavenumbers rpþ such that

rpþ ¼ rpn [ rpl [ r�
pl ð30Þ

The set rpþ is the subset of the discrete spectrum rp. In addition, define the subset of the wavenumbers for
the branch cuts in the complex wavenumber plane located in positive real and negative imaginary axes. This

set is expressed by rcþ, which is the subset of the continuous spectrum rc. A brief sketch of the location of
these spectra is shown in Fig. 5. Presence of the eigenfunctions can be observed for the wavenumbers of the

spectra. The eigenfunctions for the continuous spectrum are not in L2 space and are therefore called im-
proper eigenfunctions. The following theorems (Touhei, 2002a) are also incorporated into the operation for

the addition of Eqs. (26) and (29):

Theorem 1. Let kj 2 rp. Then, the residue of the Green’s function in the wavenumber domain at wavenumber kj
is decomposed into the eigenfunction such that

Res
k¼kj

gkðz; z0Þ ¼
1

2
WkjðzÞE�1

kj
Wkjðz0Þ

T ðkj 2 rpÞ ð31Þ

where WkjðzÞ is the eigenfunction and Ekj is the energy integral defined for the discrete spectrum rp.

Fig. 5. Location of the spectra in the complex wavenumber plane.
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Theorem 2. The discontinuity of the Green’s function in the wavenumber domain at the branch cuts can be

decomposed into the improper eigenfunction as follows:

g"
kðz; z0Þ � g#kðz; z0Þ ¼ pi

k
jkjWkðzÞE�1

k Wkðz0ÞT ðk 2 rcÞ ð32Þ

where WkðzÞ is the improper eigenfunction and Ek is the energy integral defined for the continuous spectrum rc.

The definition of the energy integral for the discrete spectrum is

Ek ¼ k
Z 1

0

WkðzÞTK2WkðzÞdzþ
Z 1

0

ozWkðzÞTK3WkðzÞdz ðk 2 rpÞ ð33Þ

while that for the continuous spectrum is

Ekdðjnj � jkjÞ ¼ k
Z 1

0

WnðzÞTK2WkðzÞdzþ
Z 1

0

ozWnðzÞTK3WkðzÞdzþOð1Þ ðn; k 2 rcÞ ð34Þ

where K2 and K3 are denoted by

K2 ¼ diag½l ðk þ 2lÞ l	

K2 ¼
0 �k 0

l 0 0

0 0 0

264
375 ð35Þ

The integration of Eq. (34) is for the improper eigenfunctions that are not in L2 space, so that the Dirac
delta function is required to express the divergence of the integral. In addition, the Landau notation Oð1Þ in
Eq. (34) represents a term which remains constant when n approaches k. The energy integrals are symmetry
matrices (Touhei, 2002a) which ensures the reciprocity of the Green�s function.
The addition of Eqs. (26) and (29) leads to the following:

GðrÞ ¼ � i

4

X1
m¼�1

X
k2rp

sðkÞkHmðsÞ
k ðr; hÞWkðzÞE�1

k Wkðz0ÞTŝsmk

� i

4

X1
m¼�1

Z
rc

kHmðsÞ
k ðr; hÞWkðzÞE�1

k Wkðz0ÞTŝsmk jdkj þ BsðrÞ ð36Þ

where sðkÞ is the function

sðkÞ ¼ 1 when k 2 rpn [ rpl
�1 when k 2 r�

pl

�
ð37Þ

s takes 1 or 2 according to k as follows:

s ¼ 2 when k 2 rpn [ rpl
1 when k 2 r�

pl

�
ð38Þ

In addition BsðrÞ is due to the singularity of the horizontal wavefunction at k ¼ 0, which can be expressed
as

BsðrÞ ¼
1

2p

X1
m¼�1

Z
C2þC3

kHmð2Þ
k ðr; hÞgkðz; z0Þŝsmk dk ð39Þ
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A similar procedure is available for the Green�s function due to a double source. The result is as follows:

TbðrÞ ¼ � i

4

X2
m¼�2

X
k2rp

sðkÞkHmðsÞ
k ðr; hÞWkðzÞE�1

k Wkðz0ÞTd̂dmbk

� i

4

X2
m¼�2

Z
rc

kHmðsÞ
k ðr; hÞWkðzÞE�1

k Wkðz0ÞTd̂dmbk jdkj þ BdbðrÞ ð40Þ

The effects of the singularity of the horizontal wavefunction at k ¼ 0 for Eq. (40) is expressed by BdbðrÞ
which is as follows:

BdbðrÞ ¼
1

2p

X2
m¼�2

Z
C2þC3

kHmð2Þ
k ðr; hÞgkðz; z0Þd̂dmbk dk ð41Þ

3.3. Singularity of the horizontal wavefunction

In this section, the effects of the singularity of the horizontal wavefunction BsðrÞ and BdbðrÞ shown in
Eqs. (39) and (41) are clarified. The singularity around k � 0 of the Hankel function used in the horizontal

wavefunction becomes stronger as m increases. Assuming that mP 1, the principal part of the singularity

of the horizontal wavefunction at k ¼ 0 becomes

H
mð2Þ
k ðr; hÞ �

k!0

2mðm� 1Þ!
p

ieimhðkrÞ�m
1 0 0

0 �mðkrÞ�1 imðkrÞ�1

0 imðkrÞ�1 mðkrÞ�1

24 35 ð42Þ

On the other hand, in the case that m ¼ 1, ŝsmk for the Green�s function due to the single source is

ŝsmk ¼
0 0 0

0 1=2 ð�1=2Þi
0 ð�1=2Þi �1=2

24 35 ð43Þ

Therefore, according to Eqs. (42) and (43), the integrand of Eq. (39) shows k�1 singularity around k � 0 in
the case that m ¼ 1. To evaluate the singularity, the Green�s function in the wavenumber domain around
k � 0 must be investigated. The operator Ak for the Green�s function in the wavenumber domain defined
in Eq. (16) has the following property:

Ak!
k!0

ðk þ 2lÞo2z þ qx2 0 0

0 lo2z þ qx2 0

0 0 lo2z þ qx2

24 35 ð44Þ

Therefore, the Green�s function in the wavenumber domain shows

gkðz; z0Þ!
k!0
diag½aðz; z0Þ; bðz; z0Þ; bðz; z0Þ	 ð45Þ

where

ððk þ 2lÞo2z þ qx2Þaðz; z0Þ ¼ �dðz� z0Þ

ðlo2z þ qx2Þbðz; z0Þ ¼ �dðz� z0Þ

A property of the integrand of Eq. (39) can now be summarized as follows by means of Eqs. (42), (43) and

(45):
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kHm
k ðr; hÞgkðz; z0Þŝsmk !k!0

0 0 0

0 0 0

0 0 0

24 35 ð46Þ

Therefore, the singularity of k�1 due to the horizontal wavefunction does not affect the integration when
m ¼ 1. When m6 � 1, a property of the Hankel function

H ðsÞ
�mð�Þ ¼ ð�1ÞmH ðsÞ

m ð�Þ
ensures the possibility of the usage of the discussion presented here. It is clear that the singularity of k�1 is
not an issue when m ¼ 0. A similar procedure is possible for the Green�s function due to a double source.
The following theorem is a summary of the above discussion and the Green�s function is found to be simply
expressed in terms of only the normal, complex and improper modes.

Theorem 3. The singularity of the horizontal wavefunction at k ¼ 0 does not have any effect on Green’s
function. Namely,

BsðrÞ ¼
1

2p

X1
m¼�1

Z
C2þC3

kHm
k ðr; hÞgkðz; z0Þŝsmk dk ¼ 0

BdbðrÞ ¼
1

2p

X2
m¼�2

Z
C2þC3

kHm
k ðr; hÞgkðz; z0Þd̂d

m
bk dk ¼ 0

3.4. Properties of the complex Rayleigh wave modes

The fact that the imaginary part of the whole of the complex Rayleigh wave modes for the Green�s
function is zero has been shown (Touhei, 2002a). However, the proof for this was complicated. In this

section, a simple proof for the fact is presented. Here, f is used for the complex variable and the superscript
� for the complex variable indicates the complex conjugate. The following lemma is required for the

discussion:

Lemma 1. There is a relationship between the first and second kind of Hankel function for the complex

variables, which can be written as

H ð1Þ
m ðf�Þ ¼ ½H ð2Þ

m ðfÞ	�

The proof was given in the article (Touhei, 2002a).

In addition, the following relationship for the first kind of the Bessel functions:

Jmðf�Þ ¼ ½JmðfÞ	�

is also required for the discussion. One property of the horizontal wavefunctions, ŝsmk and d̂dmbk based on the
above equations is

H
�mð1Þ
k� ðr; hÞ ¼ ð�1Þm½Hmð2Þ

k ðr; hÞ	�

ŝs�mk� ¼ ð�1Þm ½̂ssmk 	
�

d̂d�m
bk� ¼ ð�1Þm½d̂dmbk	

�
ð47Þ

In addition, note that

k 2 rpl () k� 2 r�
pl
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and if WkðzÞ is the eigenfunction for the complex Rayleigh wave mode for the wavenumber k, then ðWkðzÞÞ�
is also the eigenfunction for the complex Rayleigh wave mode for the wavenumber k�. As a result,

one property of the energy integral for the complex Rayleigh wave mode is such that

Ek� ¼ ðEkÞ� ðk 2 rplÞ

The following theorem can now be presented:

Theorem 4. The imaginary part of the whole of the complex Rayleigh wave modes in the Green’s function is

zero.

Proof. Suppose that k 2 rpl. According to Eq. (36), superposition of the complex Rayleigh wave modes of
the complex conjugate each other with the different signs of m leads to

ð�i=4ÞHmð2Þ
k ðr; hÞWkðzÞE�1

k Wkðz0ÞTŝsmk � ð�i=4ÞHmð1Þ
k� ðr; hÞWk� ðzÞE�1

k� Wk� ðz0ÞTŝsmk�
¼ ð�i=4ÞHmð2Þ

k ðr; hÞWkðzÞE�1
k Wkðz0ÞTŝsmk � ð�i=4Þ½Hmð2Þ

k ðr; hÞWkðzÞE�1
k Wkðz0ÞTŝsmk 	

� ð48Þ

from which it is found that the imaginary part is zero. Therefore, the imaginary part of the whole complex

Rayleigh wave mode is zero. A similar procedure is possible for the Green�s function due to a double
source. �

This theorem is valid for an arbitrary excitation frequency of real value. Therefore, the complex Ray-

leigh wave modes exhibit non-propagating waves, namely, standing waves, since the imaginary part of the

wavefunction in the frequency domain is necessary to express a phase during wave propagation.

3.5. The Green’s function for traction

It is now possible for us to transform the Green�s function in the cylindrical coordinate system into that

in a cartesian coordinate system. The transformation of the displacement vector at the field point becomes

u1
u2
u3

0@ 1A ¼ RðhÞ
uz
ur
uh

0@ 1A ð49Þ

where RðhÞ denotes

RðhÞ ¼
0 cos h � sin h
0 sin h cos h
1 0 0

0@ 1A ð50Þ

Likewise, the transformation of the force vector at the source point from the cartesian coordinate system

into the cylindrical coordinate system is

fz
fr
fh

0@ 1A ¼ Rð0ÞT
f1
f2
f3

0@ 1A ð51Þ

in case the horizontal coordinate of the source point is the origin of the coordinate system. Let the Green�s
function for displacement, namely, due to a single source, in the cartesian coordinate system be denoted by

Uðr; r0Þ, where r0 is the source point in which the horizontal coordinate are not the origin of the global
coordinate system. The components of the field and source points in terms of the cartesian coordinate

system are expressed by
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r ¼ ðx1; x2; x3Þ
r0 ¼ ðx01; x02; x03Þ

ð52Þ

Now, based on Eqs. (49) and (51), the Green�s function can be expressed as follows:

Uðr; r0Þ ¼ � i

4

X1
m¼�1

X
k2rpþ

sðkÞk/mðsÞ
k ðx1 � x01; x2 � x02; x3ÞE�1

k Smk ðx03Þ

� i

4

X1
m¼�1

Z
rcþ

k/mk ðx1 � x01; x2 � x02; x3ÞE�1
k Smk ðx03Þjdkj ð53Þ

where /mk and Smk are defined by

/
mðsÞ
k ðx1 � x01; x2 � x02; x3Þ ¼ RðhÞHmðsÞ

k ðr; hÞWkðx3Þ ðs ¼ 1:2Þ
Smk ðx03Þ ¼ Wkðx03Þ

T
ŝsmk Rð0Þ

T
ð54Þ

Note that r and h in Eq. (54) are

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x01Þ

2 þ ðx2 � x02Þ
2

q
ð55Þ

h ¼ tan�1
x2 � x02
x1 � x01

ð56Þ

Derivation of the Green�s function for traction is almost the same. The result, which is based on Tb, is

Tðr; r0Þ ¼ � i

4

X2
m¼�2

X
k2rp

sðkÞk/mðsÞ
k ðx1 � x01; x1 � x02; x3ÞE�1

k Dm
k ðx03Þ

� i

4

X2
m¼�2

Z
rc

k/mð2Þk ðx1 � x01; x1 � x02; x3ÞE�1
k Dm

k ðx03Þjdkj ð57Þ

where Tðr; r0Þ is the Green�s function for traction and the components of Dm
k are obtained from

½Dm
k ðx03Þ	ab ¼ knb½Smckðx03Þ	ac þ lnc½Smckðx03Þ	ab þ lnc½Smbkðx03Þ	ac ð58Þ

where ½ 	ab denotes the components of the matrix, n describes the normal vector used to define the traction
and the summation convention is applied to Eq. (58). In addition,

Smbk ¼ Wkðx03Þ
T
d̂dmbkRð0Þ

T ðb ¼ 1; 2Þ
Smbk ¼ W0

kðx03Þ
T
ŝsmk Rð0Þ

T ðb ¼ 3Þ
ð59Þ

where W0
kðx03Þ is the derivative of the eigenfunction.

4. Integral equation method for the scattering problem

Let us consider the scattering problem, the concept of which is shown in Fig. 1. The displacement field
outside the scattering object can be decomposed into the following form:

u ¼ uF þ uS ð60Þ
where uF is the free field response of the layered medium due to a plane incident wave and uS is the
scattering wave radiating from the scattering object. In the first part of this section, a brief overview for the
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free field response is presented. After that, a boundary integral equation for the scattering problem is

discussed.

To obtain the free field response, let the displacement field be expressed by the three scalar potentials as

shown in Appendix A,

uF ¼ ru þr�r� ðwezÞ þ r � ðvezÞ ð61Þ
The scalar potentials for the plane wave are in the forms of

uðrÞ ¼ expð�iðk1x1 þ k2x2ÞÞûukðx3Þ
wðrÞ ¼ expð�iðk1x1 þ k2x2ÞÞŵwkðx3Þ
vðrÞ ¼ expð�iðk1x1 þ k2x2ÞÞv̂vkðx3Þ

ð62Þ

where ûuk, ŵwk and v̂vk satisfy the following:

ðo23 þ k2L � k2Þûukðx3Þ ¼ 0

ðo23 þ k2T � k2Þŵwkðx3Þ ¼ 0

ðo23 þ k2T � k2Þv̂vkðx3Þ ¼ 0

ð63Þ

where k2 ¼ k21 þ k22 . Substitution of Eq. (62) into Eq. (61) leads to the following:

uF1ðx1; x2; x3Þ
uF2ðx1; x2; x3Þ
uF3ðx1; x2; x3Þ

0@ 1A ¼
1
k o1hkðx1; x2Þ 1

k o2hkðx1; x2Þ 0
1
k o2hkðx1; x2Þ � 1

k o1hkðx1; x2Þ 0

0 0 hkðx1; x2Þ

24 35 ûukxyðzÞ
ûukSHðzÞ
ûukzðzÞ

0@ 1A ð64Þ

where uFj ðj ¼ 1; 2; 3Þ is the component of uF and
hkðx1; x2Þ ¼ expð�iðk1x1 þ k2x2ÞÞ ð65Þ

Note that ðûukxy ; ûukSH; ûukzÞT is the wave function in the wavenumber domain satisfying

Ak

ûukz
ûukxy
ûukSH

0@ 1A ¼ 0 ð66Þ

The method for composing the solution for Eq. (66) is possible by means of the propagator matrix method

shown in Appendix B.

To obtain the boundary integral equation, the definition of the radiation condition for an elastic layered

half space is necessary. However, it would be very difficult to present the radiation condition for a gene-

ralized elastic layered wave field as in the form of the Sommerfeld radiation condition. Therefore, instead of

presenting such conditions, we define the radiation solution of an elastic layered half space in the form:

Definition 1. The radiation solution of an elastic layered half space from a scattering object is the solution

expressed by boundary values and the Green�s functions such that

uðrÞ ¼ �
Z

C
Tðr; r0Þuðr0ÞdCðr0Þ þ

Z
C
Gðr; r0Þsðr0ÞdCðr0Þ ð67Þ

where

r 2 R2 � Rþ n ðC [ XÞ ð68Þ
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In addition, we introduce the following assumption:

Assumption 3. The scattering wave shown in Eq. (60) is the radiation solution. Namely,

uSðrÞ ¼ �
Z

C
Tðr; r0ÞuSðr0ÞdCðr0Þ þ

Z
C
Gðr; r0ÞsSðr0ÞdCðr0Þ ð69Þ

Let us investigate one property of the definition of the radiation solution. Assume that L be the operator
for the elastic wave propagation. Namely,

L ¼ ðk þ lÞrr � þlr2 þ qx2

The definition of the Green�s function is

LUðr; r0Þ ¼ �1dðr� r0Þ ð70Þ
Reciprocity of the Green�s function

Uðr; r0Þ ¼ Uðr0; rÞT ð71Þ
ensures the following:

LUðr0; rÞT ¼ �1dðr� r0Þ ð72Þ
The reciprocity of the Green function, which can be captured from its eigenfunction expansion form with

the symmetry of the energy integrals, describes the property of the exchange of the source and field points.

At this point, let B be the intersection of a large sphere including the scattering object and the layered wave
field and CB be its boundary. It is possible to derive the following Green�s identity for the operator L by

integration by parts:Z
X�
½u�ðrÞTLuðrÞ � ½Lu�ðrÞ	TuðrÞ	dX�ðrÞ ¼

Z
CþCB

½u�ðrÞTsðrÞ � s�ðrÞTuðrÞ	dCðrÞ ð73Þ

where u and u� are displacement fields, s and s� are the corresponding traction vectors and

X� ¼ B n ðX [ CÞ ð74Þ
Note that the direction of the normal vector at the boundary to define the traction is outward with respect

to X�. Now, let

u�ðrÞ ¼ Uðr0; rÞT ð75Þ
and

LuðrÞ ¼ 0 ð76Þ
Then, the following integral equation is derived from Eq. (72) in the case r0 2 X�:

uðr0Þ ¼ �
Z

CþCB

Tðr0; rÞuðrÞdCðrÞ þ
Z

CþCB

Uðr0; rÞsðrÞdCðrÞ ð77Þ

Assume that u in Eq. (77) be the radiation solution. Then, the definition of the radiation solution requiresZ
CB

Tðr; r0ÞuðrÞdCðr0Þ �
Z

CB

Uðr; r0Þsðr0ÞdCðr0Þ ! 0 ða! 1Þ ð78Þ

for the case of r 2 X�, where a denotes the radius of the sphere.
For the free field response, the Green�s identity is applied to the region of the scattering object X,Z

X
½u�ðrÞTLuðrÞ � ½Lu�ðrÞ	TuðrÞ	dXðrÞ ¼

Z
C
½u�ðrÞTsðrÞ � s�ðrÞTuðrÞ	dCðrÞ ð79Þ
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and the following integral equation is established:

�
Z

C
Tðr; r0ÞuFðr0ÞdCðr0Þ þ

Z
C
Gðr; r0ÞsFðr0ÞdCðr0Þ ¼ 0 ð80Þ

where r 2 R2 � Rþ n ðX [ CÞ. Addition of Eqs. (69) and (80) leads to the following:

uðrÞ þ
Z

C
Tðr; r0Þuðr0ÞdCðr0Þ ¼

Z
C
Uðr; r0Þsðr0ÞdCðr0Þ þ uFðrÞ; r 2 R2 � Rþ n ðX [ CÞ ð81Þ

At this point, let r approach the boundary of the scattering object. Then, the following boundary integral
equation is established:

cuðrÞ þ
Z

C
Tðr; r0Þuðr0ÞdCðr0Þ ¼

Z
C
Uðr; r0Þsðr0ÞdCðr0Þ þ uFðrÞ ðr 2 CÞ ð82Þ

where c is the coefficient matrix of the free term of the boundary integral equation.
For the inclusion of the scattering object, the boundary integral equation is as follows:

cðiÞðrÞuðiÞðrÞ þ
Z

C
TðiÞðr; r0ÞuðiÞðr0ÞdCðr0Þ ¼

Z
C
U ðiÞðr; r0ÞsðiÞðr0ÞdCðr0Þ ðr 2 CÞ ð83Þ

where the superscript (i) denotes the variable related to the inclusion of the scattering object. In addition,
the direction of the normal vector to define the traction vector sðiÞ is away from the scattering object.
According to standard texts on the boundary element method (for example, Brebbia and Walker, 1980),

the components of the Green�s functions for inclusion can be written as follows:

U ðiÞ
ab ðr; r0Þ ¼

dab

4plðiÞ UðT Þ
1 ðrÞ

�
þ UðT Þ

2 ðrÞ � ðcðiÞT =c
ðiÞ
L Þ

2UðLÞ
2 ðrÞ

�
þ 1

4plðiÞ
or
ox0a

or
ox0b

�
� UðT Þ

3 ðrÞ þ ðcðiÞT =c
ðiÞ
L Þ

2UðLÞ
2 ðrÞ

�
ð84Þ

where r is the distance between the field and source points, cðiÞT and cðiÞL are the S and P wave velocities,

respectively and UðpÞ
j ðj ¼ 1; 2; 3; p ¼ T ; LÞ is the wavefunction given by

UðpÞ
1 ðrÞ ¼

expð�ikðiÞp rÞ
r

UðpÞ
2 ðrÞ ¼ � 1

kðiÞ2p r2

 
þ i

kðiÞp r

!
expð�ikðiÞp rÞ

r

UðpÞ
3 ðrÞ ¼ UðpÞ

1 ðrÞ þ 3UðpÞ
2 ðrÞ ðp ¼ T ; LÞ

ð85Þ

where kðiÞT and kðiÞL are the wavenumbers for the S and P waves for the inclusion, respectively. The Green�s
function for the traction is obtained from the following identity:

T ðiÞ
ab ðr; r0Þ ¼ kðiÞdbc

oU ðiÞ
ag

ox0g

 
þ lðiÞ oU ðiÞ

ac

ox0b

 
þ
oU ðiÞ

ab

ox0c

!!
nc ð86Þ

It is a simple process to couple the boundary integral equations (82) and (83) by means of Eq. (7). As a

result, the scattering wave field can be analyzed.

Once the boundary values are obtained by boundary element analysis, the scattering waves are deter-
mined by means of Eq. (82):

uSðrÞ ¼ �
Z

C
Tðr; r0Þuðr0ÞdCðr0Þ þ

Z
C
Uðr; r0Þsðr0ÞdCðr0Þ ð87Þ
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Substituting Eqs. (53) and (57) into (87) and performing the boundary integration leads to the following

representation of scattering waves:

usðrÞ ¼
X
k2rp

ykðrÞ þ
Z

rc

ykðrÞ jdkj ð88Þ

where yk is denoted by

ykðrÞ ¼
i

4

X2
m¼�2

sðkÞ
Z

C
k/mðsÞk ðx1 � x01; x1 � x02; x3ÞE�1

k Dm
k ðx03Þuðr0ÞdCðr0Þ

� i

4

Xþ1
m¼�1

sðkÞ
Z

C
k/mðsÞ

k ðx1 � x01; x1 � x02; x3ÞE�1
k Smk ðx03Þsðr0ÞdCðr0Þ ð89Þ

Eq. (88) shows that the scattering waves are decomposed into wavefunctions on the spectra. As shown

in the following examples, the decomposition of the scattering waves will aid in the understanding of

their properties.

5. Numerical examples

A computer program based on the formulation presented here was developed for the analysis of nu-

merical examples. The propagator matrix method was employed in the program to obtain the eigenfunc-

tions that constitute the Green�s functions for a multi-layered medium. The examples shown below are for

the verification of the developed program as well as to investigate radiation of the scattering waves from an

object in a layered medium.
Fig. 6 shows the analyzed model, in which a spheroidal scattering object is embedded in a two-layered

elastic half space and a plane incident SV wave is considered. The amplitude of the incident wave is

normalized such that the free field response in the wavenumber domain due to the incident wave satisfies

jûukxy j2 þ jûukzj2 ¼ 1 ½cm2	 ð90Þ

at the free boundary, where ûukxy and ûukz are shown in Eq. (64). The normalization means that the unit of the
displacements shown below is [cm].

Fig. 6. Analyzed model for the scattering problem. The scattering object is in a two-layered elastic half space.
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As shown in the analyzed model, a cartesian coordinate system is employed in this section. The fre-

quency of the analysis is 1.0 Hz, and the direction vector of the plane incident SV wave is

a ¼ ð1; 1;�1Þ ð91Þ

in terms of the coordinate system shown in Fig. 6. The mass density of the layered medium is 2.0 g cm�3

both for the surface layer and the half space. The S and P wave velocities for the surface layer are 1.0 and

2.0 km s�1, respectively, while those for the half space are 1.5 and 3.0 km s�1, respectively. The depth of the

surface layer is 1.0 km. The boundary elements for the spheroidal object are shown in Fig. 7.
Fig. 8 shows the location of the wavenumbers for the complex Rayleigh wave modes in the first quadrant

of the complex wavenumber plane for the analyzed model at a frequency of 1.0 Hz. The wavenumbers are

obtained from the following Newton–Raphson scheme:

kjþ1 ¼ kj �
F ðkjÞ
F 0ðkjÞ

ðj ¼ 1; 2; . . .Þ ð92Þ

F 0ðkjÞ ¼
1

2pi

I
F ðkÞ

ðk � kjÞ2
dk ð93Þ

where kj is an approximate wavenumber for the complex Rayleigh wave mode and F ðkÞ is the characteristic
function for the wave field. The contour integral for Eq. (93) is performed for the small circle around kj. As
can be seen in Fig. 8, the complex Rayleigh wave modes distribute almost linearly in the semi-logarithmic

graph of the complex wavenumber plane. The complex Rayleigh wave modes are shown to approximate

1500 km�1 at their absolute values. These high absolute values are required for the calculation of the

Green�s functions for cases in which the horizontal range of the field and source points are very small,
namely the horizontal range is approximately 0.02 km.

Fig. 7. Boundary elements for the scattering object.
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First, let the properties for the inclusion of the scattering object be identical to those of the surrounding,
so that the present solution for the wave field becomes a free field response, which can be calculated using

the propagator matrix method. Figs. 9 and 10 show comparisons of the displacements of the free field

responses and the present solutions along the y-axis on the free surface. According to the figures, the results
show almost complete agreement, which validates the accuracy of the proposed method. Therefore, the

complete eigenfunction expansion form of the Green�s functions for displacement and traction are appli-
cable to the boundary element analysis.

Next, let the inclusion of the object be softer. Here, the S and P wave velocities for inclusion are 0.75 and

1.5 km s�1, respectively, and the mass density is 2.0 g cm�3. Fig. 11 shows the distribution of the dis-
placements of the wave field at the free surface. In addition, Figs. 12 and 13 show the free field response and

propagation of the scattering wave at the free surface, respectively. Note that the result in Fig. 11 is the sum

of the results in Figs. 12 and 13. In other words, the differences between Figs. 11 and 12 are due to the

effects of the scattering wave. The arrow shown in the figures is the projection of the direction of the

incident wave onto the x–y plane.

0 2 4 6 8
100

101

102

103

Re(k)

Im(k)

Fig. 8. Location of the wavenumbers for the complex Rayleigh wave modes in the first quadrant of the complex wavenumber plane.
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Fig. 9. Comparison of displacements in x-direction at the surface along y-coordinate.
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Fig. 10. Comparison of displacements in z-direction at the surface along y-coordinate.
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Fig. 11. Total scattering wave field at the free surface.
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Fig. 12. Free field response at the free surface.
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As shown in Fig. 11, the effects of the scattering wave can be seen mostly above the scattering object. In

the range of the far field of the object, the present solution and the free field response tend to agree. Ac-

cording to Fig. 13, the scattering waves propagate approximately isotropically around the scattering object.

Furthermore, the amplitudes of the displacement in the backward side of the scattering object are larger

than those in the forward side. The wavelengths of the scattering wave are shorter on the backward side

of the object than those on the forward side. Relatively large amplitudes for the vertical displacement can

be found in the immediate vicinity of the scattering object.

At this point, let us investigate the properties of the scattering wave in terms of the modes for the discrete
and continuous spectra. Here, the scattering waves are decomposed into the modes based on Eq. (89). Note

that the wavenumber for the fundamental Rayleigh wave mode is 6.69 km�1 and that for the first higher

mode is 4.68 km�1. In addition, the wavenumber for the fundamental Love wave mode is 6.12 km�1 and

that for the first higher mode is 4.79 km�1 at a frequency of 1.0 Hz. The wavenumber of the S wave in the

half space is 4.19 km�1.

Fig. 14 is the propagation of the fundamental Rayleigh wave mode decomposed from the scattering

waves. As can be seen in Fig. 14, the fundamental Rayleigh wave mode clearly propagates in the forward

direction. For the lateral side of the scattering object, the amplitudes of the mode are very small. The
displacement amplitudes in the backward side of the object are relatively large, while the wave forms in this

area are not clear when compared with the propagation of the mode in the forward direction.

Fig. 15 shows the distribution of the amplitudes of the complex Rayleigh wave mode for

k ¼ ð1:33þ 3:41iÞ km�1. As shown in the figure, relatively large displacement amplitudes can be seen in the

immediate vicinity of the scattering object, and the amplitudes reduce rapidly towards the far field. The

distribution of displacement exhibits directionality. Namely, the displacements can be seen in the forward

and backward side of the scattering object. Here, displacements in the vertical direction are outstanding.

Fig. 16 shows the propagation of the fundamental Love wave mode decomposed from the scattering
waves. The propagation shows a rotational motion around the object. In addition, the displacement am-

plitudes are found to be very small. The reason for the very small displacement amplitudes is that the Love

wave is caused by SH waves which are not included in the free field response. The free field response here

is constituted by the P and SV waves.

Fig. 17 shows the propagation of the mode for the continuous spectrum. The wavenumber for the mode

is 4.19 km�1. This is the wavenumber of the S wave for the half space. According to Fig. 17, the scattering

waves propagate in the forward and backward direction with relatively larger displacement amplitudes
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Fig. 13. Radiation of the scattering wave at the free surface.
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compared to those in the lateral side direction. The direction of the displacement is found to be mostly
vertical. In addition, the scattering wave spreading to the forward side of the object covers a wider area

compared to that spreading to the backward side. Fig. 18 shows the propagation of the mode for the

continuous spectrum for k ¼ 0:0 km�1. It can be seen that the displacement amplitudes distribute iso-

tropically around the scattering object. The direction of the displacement is also prominent in the vertical

direction. The amplitudes decrease monotonously with respect to distance from the object.

According to the properties of the propagation of the modes, the Rayleigh wave mode is found to have

directionality during its propagation, while the modes for the continuous spectrum do not have strong

directionality. Therefore, the continuous spectrum is more significant in the propagation of the scattering
wave shown in Fig. 13.

Fig. 19 shows the spectral amplitude of the scattering wave at a field point of x ¼ 5 km, y ¼ 5 km at the

free surface. Here, the absolute values of yk shown in Eq. (89) are plotted. The vertical lines in the figure
denote the amplitude of the normal modes, while the continuous line denotes the amplitude for the con-

tinuous spectrum. Note that the negative region of the horizontal axis in the figure denotes the pure

imaginary negative wavenumber. The unit of the spectral amplitude for the discrete spectrum is [cm] and
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Fig. 17. Radiation of the scattering wave for the continuous spectrum. The wavenumber is k ¼ 4:19 km�1.
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Fig. 18. Radiation of the scattering wave for the continuous spectrum. The wavenumber is k ¼ 0:0 km�1.
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that for the continuous spectrum is [cmkm]. It is found from Fig. 19 that the amplitudes of the higher

modes for the discrete spectrum are larger than those of the lower modes. The reason for this is that the

wavenumber for the plane incident wave is in the continuous spectrum, which is closer to the higher modes

for the discrete spectrum. As for the spectral amplitude of the continuous spectrum, the amplitude is higher

in the positive real wavenumber range than that in the negative pure imaginary wavenumber range. The

reason for this is that the wavenumber for the plane incident wave is in the continuous spectrum for the

positive real wavenumber and the horizontal wavefunction decreases rapidly in the pure imaginary negative

wavenumber range due to the properties of the Hankel function.
One of the advantages of the present Green�s function is that it simplifies the formulation for the

boundary integral equation method. The reason for this is that complicated information for the layered

structure can be imposed on the eigenfunctions for the spectra. The present Green�s function also enables us
to decompose scattering waves into the modes for the spectra, which helps in understanding their pro-

perties. Furthermore, accurate values can be calculated by means of the Green�s function, even in the case
that the field and source points are close to each other and when the points are located in the area far from

the free surface. The main disadvantage of the present Green�s function is that it requires significant

processing time when the horizontal distance between the field and source points are very small. This is due
to the slow convergence of the spectral integral. The complex Rayleigh wave modes required by the present

Green�s function also complicate the usage, since it is an elaborate process to find out and to identify them.

6. Conclusions

A formulation and numerical examples for the analysis of scattering waves caused by interaction between

an object and a plane incident wave in an elastic layered half space were presented in this paper. For the

analysis, the complete eigenfunction expansion form of the Green�s function and the boundary integral
equationmethodwere employed.At first, the complete eigenfunction expansion formof theGreen�s functions
due to single and double sources were derived. Based on the Green�s functions, the singularity of the hori-
zontal wavefunction for the eigenfunction expansion form of the Green�s functions were investigated. The
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Fig. 19. Spectral structure of the scattering wave at the free surface of x ¼ 5 km and y ¼ 5 km. The units of the spectral amplitude for

the discrete spectrum are [cm] and that for the continuous spectrum are [cmkm].
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result clarified that the singularity did not have any effects on the Green�s functions. Namely, the Green�s
functions were simply expressed by the summation and integration of the eigenfunctions for the discrete and

continuous spectra. Next, a method for the application of the Green�s functions to the boundary integral
equation method as well as several numerical results were shown. According to the numerical results, the
complete eigenfunction expansion form of the Green�s function were applicable to the boundary element
analysis. Furthermore, a spectral structure as well as the radiation of the scattering wave obtained from the

present method were found to be useful to explain the properties of the scattering waves. For example, the

propagation of the fundamental Rayleigh wave mode decomposed from the scattering wave exhibited strong

directionality when compared to that for the continuous spectrum. The scattering wave propagated iso-

tropically around the object, so that the components of the continuous spectrum were more significant

for the scattering wave than those of the discrete spectrum.

Appendix A. Fourier–Hankel transform for an elastic layered wave field

We investigate here a Fourier–Hankel transform for a vector field of an elastic layered medium. The

derivation of the transform is presented formally. In the following, the infinite series for m can be seen,

however, it can be reduced into the finite sum in the case that the point source is applied. The problem of

the convergence of the wavenumber integral is also discussed in the main text of this article. Following Aki

and Richards (1980), three scalar potentials u, w and v are employed to represent a displacement field for
an elastic layered wave medium

u ¼ ru þr�r� ðwezÞ þ r � ðvezÞ ðA:1Þ
where ez is the base vector for the vertical coordinate. Note that u, w and v are for the P, SV and SH waves,

respectively. Let the scalar potentials be expressed in the following form:

uðrÞ ¼ 1

2p

X1
m¼�1

expðimhÞ
Z 1

0

kJmðkrÞûumk ðzÞdk

wðrÞ ¼ 1

2p

X1
m¼�1

expðimhÞ
Z 1

0

kJmðkrÞŵwmk ðzÞdk

vðrÞ ¼ 1

2p

X1
m¼�1

expðimhÞ
Z 1

0

kJmðkrÞv̂vmk ðzÞdk

ðA:2Þ

where m is the circumferential order number, k is the wavenumber and Jm is the first kind of the Bessel
function of the order m. Substituting Eq. (A.2) into Eq. (A.1) leads to the following:

uðrÞ ¼ 1

2p

X1
m¼�1

Z 1

0

kHm
k ðr; hÞûumk ðzÞdk ðA:3Þ

where Hm
k is called here the horizontal wavefunction with components

Hm
k ðr; hÞ ¼

Y mk ðr; hÞ 0 0

0 1
k orYkðr; hÞ 1

kr ohY mk ðr; hÞ
0 1

kr ohY mk ðr; hÞ � 1
k orY

m
k ðr; hÞ

264
375 ðA:4Þ

where

Y mk ðr; hÞ ¼ JmðkrÞ expðimhÞ ðA:5Þ

Note that the superscript m does not denote the power and o is a partial differential operator with respect to
the parameter given by the subscript. In addition, the array of the components of ûumk are given by
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ûumk ðzÞ ¼
ûumzkðzÞ
ûumrkðzÞ
ûumhkðzÞ

2664
3775
0BB@ ¼

ozûumk ðzÞ þ k2ŵw
m
k ðzÞ

kûum
k ðzÞ þ kozŵw

m
k ðzÞ

kv̂vmk ðzÞ

2664
3775
1CCA ðA:6Þ

According to Eqs. (A.4) and (A.6), the array of the components of u in Eq. (A.3) becomes as follows:

u ¼ ðuz; ur; uhÞT ðA:7Þ
There is a relationship between the components of u and ûumk as follows:

umz ¼
Z 1

0

kJmðkrÞûumzk dk

umr � iumh ¼
Z 1

0

kJm�1ðkrÞðûumrk þ iûumhkÞdk

umh � iumr ¼
Z 1

0

kJmþ1ðkrÞðûumhk þ iûumrkÞdk

ðA:8Þ

where

umj ¼
Z 2p

0

uj expð�imhÞdh ðj ¼ r; h; zÞ ðA:9Þ

Therefore, due to the properties of the Hankel transform, the following equation can be established:

ûumk ðzÞ ¼
Z 2p

0

dh
Z 1

0

rHm
k ðr;�hÞuðrÞdr ðA:10Þ

In this paper, Eq. (A.10) is used for the Fourier–Hankel transform and Eq. (A.3) for the inverse Fourier–

Hankel transform for an elastic transform.

Appendix B. Some properties of the Green�s function in the wavenumber domain

This appendix investigates some of the properties of the Green�s function in the wavenumber domain
together with the asymptotic behaviour in the case that k ! 1. The investigation strongly depends on the

propagator matrix method which is used for composing the Green�s function in the wavenumber domain.
Under these circumstances, a brief explanation of the propagator matrix method is presented. In the fol-

lowing discussion, the layer index l is for the half space.
First of all, consider a layer bounded by hj < z < hjþ1 and a homogeneous solution in the layer. The

solution for the equation is given by

Ak ûu
m
k ðzÞ ¼ 0 ðhj < z < hjþ1Þ ðB:1Þ

where the differential operator is given by Eq. (16), hj and hjþ1 are the vertical coordinates of the layer
interfaces and

ûumk ðzÞ ¼ ðûumzk ûumrk ûumhkÞ
T ðB:2Þ

The local vertical coordinate of the layer fj

z ¼ hj þ fj ð0 < fj < hjþ1 � hjÞ ðB:3Þ
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is employed to express the solution for Eq. (B.1) such that

ûumzk ¼ �ce�cjfjD1ðjÞ þ cecjfjD2ðjÞ þ k2e�mjfjD3ðjÞ þ k2emjfjD4ðjÞ

ûumrk ¼ ke�cjfjD1ðjÞ þ kecjfjD2ðjÞ � mjke�mjfjD3ðjÞ � mjkemjfjD4ðjÞ

ûumhk ¼ ke�mjfjD5ðjÞ þ kemjfjD6ðjÞ

ðB:4Þ

where DiðjÞ ði ¼ 1–6Þ are the coefficients for the solution for the jth layer and

cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2LðjÞ

q
mj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2T ðjÞ

q ðB:5Þ

Note that kLðjÞ and kT ðjÞ are the wavenumbers for the P and S waves in the layer. The components of the
traction vector due to displacements ûumzk, ûu

m
rk and ûu

m
hk are obtained from the following:

p̂pmzk
p̂pmrk
p̂pmhk

0BB@
1CCA ¼ Pk

ûumrk
ûumzk
ûumhk

0BB@
1CCA ðB:6Þ

where Pk is the operator defined by

Pk ¼
ðk þ 2lÞoz �kk 0

lk loz 0

0 0 loz

24 35 ðB:7Þ

Define the states vector and coefficient vector for the layer such that

ðYjðfjÞÞj ¼ ðûumzkðfjÞ; ûumrkðfjÞ; p̂pmzkðfjÞ; p̂pmrkðfjÞ; ûumhkðfjÞ; p̂pmhkðfjÞÞ
T ðB:8Þ

ðDÞj ¼ ðD1ðjÞ;D2ðjÞ;D3ðjÞ;D4ðjÞ;D5ðjÞ;D6ðjÞÞT ðB:9Þ

Then, the states vector ðYjðfjÞÞj can be expressed in the form

ðYjðfjÞÞj ¼ ½B	j½KðfjÞ	jðDÞj ðB:10Þ

where the components of the matrix ½B	j and ½KðfjÞ	 are

½B	j ¼

�cj cj k2 k2 0 0
k k �mjk �mjk 0 0

lðk2 þ m2j Þ lðk2 þ m2j Þ �2lk2mj 2lk2mj 0 0

�2lcjk 2lcjk lðm2j þ k2Þk lðm2j þ k2Þk 0 0

0 0 0 0 k k
0 0 0 0 �lmjk lmjk

26666664

37777775 ðB:11Þ

½KðfjÞ	j ¼ diag½expð�cjfjÞ expðcjfjÞ expð�mjfjÞ expðmjfjÞ expð�mjfjÞ expðmjfjÞ	 ðB:12Þ

Let the states vector at fj ¼ 0 be denoted by ðY Þj and that at fj ¼ hjþ1 � hj by ðY Þjþ1, where j and jþ 1 are
the layer interface number for the upper and lower boundary for the layer. Then, the relationship of the

states vectors between ðY Þj and ðY Þjþ1 becomes as follows:
ðY Þjþ1 ¼ ½Tjþ1;j	ðY Þj ðB:13Þ
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where ½Tjþ1;j	 is the propagator matrix defined by

½Tjþ1;j	 ¼ ½B	j½Kðhjþ1 � hjÞ	j½B	
�1
j ðB:14Þ

Note that the propagator matrix has the following property:

½Tjþ1;j	 ¼ O

k k 1 1 0 0

k k 1 1 0 0

k2 k2 k k 0 0

k2 k2 k k 0 0

0 0 0 0 k k
0 0 0 0 k2 k2

26666664

37777775 expðkðhjþ1
0BBBBBB@ � hjÞÞ

1CCCCCCA ðk ! 1Þ ðB:15Þ

where O is the Landau notation and ½Tjþ1;j	 is the even function for mj and cj. Therefore, ½Tjþ1;j	 does not
depend on the branches for mj and cj.
Now, we are in a stage where it is possible to compose the solution for the equation

Ak ûu
m
k ðz; z0Þ ¼ �f̂f mk dðz� z0Þ ðh1 < z < 1Þ ðB:16Þ

where h1 is the vertical coordinate of the free surface and f̂f mk is the amplitude of the force vector acting

at z ¼ z0 whose components are expressed by

f̂f mk ¼ ðf̂f mzk f̂f mrk f̂f mhkÞ
T ðB:17Þ

The free boundary condition, layer interface conditions and radiation conditions are imposed on Eq.

(B.16). The conditions at z ¼ z0 due to the source term for ûumk are expressed as

ûumk ðz0 þ �; z0Þ ¼ ûumk ðz0 � �; z0Þ
½Pkûu

m
k ðz; z0Þ	

z0þ�
z0�� ¼ �f̂f mk

ðB:18Þ

According to Eq. (B.18) and the layer interface conditions, the relationship between the states vector at the

free surface and the coefficient vector for the half space becomes as follows:

ðDÞl ¼ ½B	�1l ½Tl;l�1	½Tl�1;l�2	 � � � ½T2;1	ðY Þ1 � ½Tl;l�1	½Tl�1;l�2	 � � � ½Tsþ1;s	ðZÞs ðB:19Þ
where the subscript 1 for the states vector indicates the free boundary, s and l for those are the layer
interface where the force is applied and that between the surface layers and the half space, respectively,
and the components of the vector ðZÞs are

ðZÞs ¼ 0 0 f̂f mzk f̂f mrk 0 f̂f mhk

� �T
ðB:20Þ

In addition, the components of the vectors ðY Þ1 and ðDÞl are as follows due to the free boundary and
radiation conditions:

ðY Þ1 ¼ ûumzk ûumrk 0 0 ûumhk 0
� �T

ðDÞl ¼ D1 0 D3 0 D5 0ð ÞT
ðB:21Þ

The unknown quantities ûumzk, ûu
m
rk, ûu

m
hk, D1, D3, D5 are uniquely determined by Eq. (B.19) unless k is in the point

spectrum. To show this, express the matrices such that

½C	 ¼ ½B	�1l ½Tl;l�1	½Tl�1;l�2	 � � � ½T2;1	
½D	 ¼ ½B	�1l ½Tl;l�1	½Tl�1;l�2	 � � � ½Tsþ1;s	

ðB:22Þ
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Then, the solution for Eq. (B.16) at the free surface can be expressed as

ûumk ð0; z0Þ ¼
Mkð0; z0Þ
F ðkÞ f̂f mk ðB:23Þ

where

F ðkÞ ¼ det

c21 c22 c25
c41 c42 c45
c61 c62 c65

24 35 ðB:24Þ

Mkð0; z0Þ ¼
c21 c22 c25
c41 c42 c45
c61 c62 c65

24 35c d23 d24 d26
d43 d44 d46
d63 d64 d66

24 35 ðB:25Þ

where cij and dij are the components for the matrices ½C	 and ½D	 and ½ 	c denotes the cofactor of the matrix.
Based on Eq. (B.23), the solution for an arbitrary depth z can be composed by multiplying a propagator
matrix connecting the free boundary and the layer interface boundary at the depth of the field point. As a

result, it is possible to give the Green�s function in the wavenumber domain in the following form:

gkðz; z0Þ ¼
Mkðz; z0Þ
F ðkÞ ðB:26Þ

Note that F ðkÞ is the characteristic function whose roots
F ðkÞ ¼ 0 ðB:27Þ

constitute the point spectrum for the Green�s function in the wavenumber domain.
Now, the asymptotic behaviour of the Green�s function in the wavenumber domain in the case that

k ! 1 can be evaluated by means of Eq. (B.15) and the procedure for composing the Green�s function. It is
expressed as follows:

gkðz; z0Þ ¼ Oðk�a expð�kjz� z0jÞÞ k ! 1 ðB:28Þ

where a > 0 is due to multiplications of the propagator matrices.

The procedure for composing the Green�s function in the wavenumber domain clarifies that the branch
cuts in the complex wavenumber plane are required for cl and ml. Due to the requirements for the radiation
conditions, the permissible sheets for the complex wavenumber plane have to satisfy ReðclÞ > 0 and

ReðmlÞ > 0. Note that the process for composing the Green�s function in the wavenumber domain clarifies
following property

g�kðz; z0Þ ¼ diag½1 � 1 � 1	gkðz; z0Þdiag½1 � 1 � 1	 ðB:29Þ
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