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Abstract

A scattering problem due to an object and a plane incident wave in an elastic layered half space is presented in this
paper. The complete eigenfunction expansion form of the Green’s function developed by the author and the boundary
integral equation method are introduced into the analysis. First, the complete eigenfunction expansion form of the
Green’s function is investigated for its application to the scattering problem. A comprehensive explanation is also given
for the fact that the complex Rayleigh wave modes exhibit standing waves. Next, a method for the analysis of scattering
waves by means of the Green’s function is presented. The advantage of the present method is that the formulation itself
is independent of the number of layers and the scattering waves can be decomposed into the modes for the spectra
defined for the layered medium. Several numerical calculations are performed to examine the efficiency of the present
method as well as the properties of the scattering waves. According to the numerical results, the complete eigenfunction
expansion form of the Green’s function provides accurate values for application to a boundary element analysis. The
spectral structure and radiation patterns of the scattering wave are presented and investigated. The differences in di-
rectionality can be found from the radiation patterns of the scattering waves decomposed into the modes for the
spectra.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analysis of scattering waves due to a scattering object and a plane incident wave in an elastic layered
half space is an important issue in the identification of energy resources, site characterization and earth-
quake engineering. The analysis becomes possible by means of the Green’s function for an elastic layered
half space and the boundary integral equation method. Few researches have addressed the scattering
problem in a layered medium (for example, Touhei, 2000), while a number of projects have investigated
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Green’s function for an elastic layered half space. This is because analysis of the scattering problem is
difficult due to the complicated representation of Green’s function for an elastic layered medium.

Techniques to investigate Green’s functions for an elastic layered medium include the reflectivity method
(Fuchs and Miiller, 1971), the discrete wavenumber method (Bouchon and Aki, 1977; Bouchon, 1979-
1982), the normal mode superposition method (Harvey, 1981), and Green’s function represented by leaky
modes (Haddon, 1984, 1986, 1987). In addition, a method without the problem of growing exponential
terms in Green’s function was presented by Kenet and Kerry (1979) and the complex poles in the per-
missible sheets for Green’s function were investigated by Watson (1972). A significant amount of literature
has also been published on the scattering problem. The effects of cracks on scattering waves in a three-
dimensional half space were analyzed by Budreck and Achenbach (1989) and the application of integral
equation methods to the scattering and inverse scattering problems were shown by Colton and Kress (1983,
1998).

The simplification of Green’s function for a layered medium would greatly assist in its application to the
scattering problem. One technique to simplify the formulation uses the eigenvalue problem for a layered
medium. The reason for this is that it is possible to impose complicated information for a layered medium
(i.e., material properties, layer interface conditions, etc.) on eigenfunctions. The purpose of this paper is to
present the formulation and numerical examples of the analysis of scattering waves in an elastic layered half
space based on the complete eigenfunction expansion form of the Green’s function developed by the author
(Touhei, 2002a). The Green’s function used here is an extension of that represented by the residue terms and
the branch line integrals given by Lamb (1904). The present expression, however, clarifies the mathematical
common frame between the residue terms and the branch line integrals with respect to the eigenfunctions
and energy integrals. The advantage of the complete eigenfunction expansion form of the Green’s function
for the analysis is that the formulation itself becomes independent of the number of layers and the scat-
tering waves can be decomposed into the modes for the spectra for the layered medium, which aids in the
understanding of the properties of the scattering waves.

The work presented here is an extension of the result for an acoustic layered half space (Touhei, 2000,
2002b). However, the extension is not straightforward. In the first part of this paper, the complete eigen-
function expansion form of the Green’s function applicable to the scattering problem is presented. This
form of the Green’s function provides the understanding of the properties of the k~! singularity of the
horizontal wavefunction for the eigenfunction expansion form of the Green’s function at £ = 0, where & is
the wavenumber. Namely, the singularity does not have any effect on the Green’s function. As a result, the
Green’s function is found to be simply expressed by the summation and integration of the eigenfunctions
for the spectra for the layered medium. In addition, a proof is presented for the fact that the complex
Rayleigh wave modes for the Green’s function show standing waves. Next, the boundary integral equation
for the scattering problem is presented based on the Green’s functions. A method for decomposing scat-
tering waves into eigenfunctions for an elastic layered medium is also explained. The decomposition
is performed by interchanging the operation required for the boundary integral with that for composing
the Green’s functions. Finally, several numerical calculations are shown to verify the proposed method as
well as to investigate the spectral structure and radiation patterns of the scattering wave.

2. Definition of the problem

Fig. 1 shows the concept of the scattering problem presented in this paper. A scattering object is em-
bedded in an elastic layered half space and a plane incident wave is propagating in the medium. Scattering
waves are caused by interaction between the object and the plane incident wave. The time factor used to
express progressive waves is set at exp(iwt), where ¢ is time and o is the circular frequency. Scattering waves
are analyzed here in the frequency domain. As shown in Fig. 1, the vertical axis is denoted by x;. Occa-
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Fig. 1. The concept of the scattering problem. A scattering object is embedded in an elastic layered half space and a plane incident wave
propagates in the layered medium.

sionally, x; is replaced by z for the sake of convenience. The layer indices attached to the variable 4 express
the vertical coordinate of the layer interfaces. Note that z = 4;(= 0) denotes the free surface of the layered
medium.

A cartesian coordinate system is employed for the formulation except for the investigation of the
properties of the Green’s function for the layered medium, in which a cylindrical coordinate system is used.
The variable r is used to express the spatial point. In cases in which a cartesian coordinate system is used,
the components of r are denoted by r = (x|, x,,x3), where x; and x, are the horizontal coordinates. For the
cylindrical coordinate system, the components of r are denoted by r = (r, 0, z).

The propagation of elastic waves in a layered medium due to a plane incident wave is governed by the
following equation:

(A4 w)VV - +uV? + polu(r) =0, r= (x1,x2,x3) €ER* xR, \ (QUT) (1)

where p, 4 and u denote the mass density and Lamé constants respectively, u is the displacement field whose
components are expressed by

u= (u17u27u3)T

Q is the region inside the scattering object and I is its boundary. Note that the mass density and Lamé
constants describing the properties of the layered medium are positive, bounded and piecewise constant
functions with respect to each layer. In the following discussion, the wavenumbers

P
o u/pw 2)
BRVIVESmYF:

are used, where ky and k; are the wavenumber for the S and P waves, respectively, which are also the
piecewise constant functions with respect to each layer.

At the interfaces of the layered medium, the displacements and the tractions satisfy the following layer
interface conditions:
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Uy (X1, %2, 1y — €) = Uy (x1,%2, h; + €) (3)
n(lay>fg(ﬁ(-x],x27hj _ 6) — nga}/)’rzp(xl;xbhj + 6) (j = 1727 e 7)

where € is an infinitesimally small positive number, the Greek characters indicate the components of a

vector or tensor for which the summation convention is applied, 7,5 is the component of the stress tensor

and nga” is that of the normal vector of the layer interface. The component of the stress tensor is given by

Top = 2000ty + p1(Opu, + Onty) (4)

where 6,4 denotes the Kronecker delta and 0 is the partial differential operator whose subscript denotes the
parameter for differentiation. The free boundary condition for the layered medium is expressed by

™ (0,22, 1) = 0 (5)

The scattering object here is assumed to be an elastic homogeneous medium. The equation of motion
inside the scattering object is given as

(2D 4y NV - 41DV + pD2uD (1) =0, r= (x1,2,X3) € Q (6)

where the superscript (i) denotes that the variables are for the inclusion of the scattering object. At the
boundary of the scattering object, the following interface conditions have to be imposed:

0, (r) = ) (r)
ny tp(r) = my () (rel)

o

(7)

where n;f) is the normal vector of unit length at the boundary of the scattering object. The direction of the

normal vector is away from the object.

Analysis of scattering waves becomes possible by solving Egs. (1) and (6) under the conditions shown in
Egs. (3), (5) and (7). In this paper, Egs. (1) and (6) are modified into boundary integral equations, which are
coupled by means of Eq. (7). The complete eigenfunction expansion form of the Green’s function (Touhei,
2002a) is used for Eq. (1), such that Egs. (3) and (5) are automatically satisfied.

3. Complete eigenfunction expansion form of the Green’s function

The boundary integral equation method requires Green’s functions for both displacement and traction.
The purpose of this section is to present the complete eigenfunction expansion form of Green’s functions
for displacement and traction. For this purpose, the formulation here begins with the direct wavenumber
integral representation of Green’s functions due to single and double sources. The cylindrical coordinate
system is mainly employed here, in which the array of the components for the vector is such that

u=(u, u, u{;)T (8)

due to the Fourier-Hankel transform shown in Appendix A. The transformation of the coordinate from the
cylindrical to cartesian coordinate systems is also provided for the boundary integral equation.

3.1. The Green’s function represented by the direct wavenumber integral

First of all, we define the Green’s function due to single and double sources in an elastic layered half
space. Let s(r,0) and dg(r, 0) (f = 1,2) be the single and double source, respectively, which are defined by
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s(r,0) =1 M5(9)
r
1/6(r—e€/2 o(r—e/2
R e R L ) o)

€ r r

do(r,0) =1 (Mé(é) —n/2) - Ma(e + n/Z))

€ r

where 1 is the identity matrix, the subscript f for the double source indicates the axis along which the
double source is applied and o(-) is the Dirac delta function. The locations of the double sources are ex-
plained by Fig. 2. The Green’s functions due to the sources are defined by

(4 WY 41V + po?|G(r) = —s(r, 0)5(z — 2)

10
(4 )V - 409+ o) Tr) = —dy(r, 003G —2) (B=1,2) 10

where r € R* X R., G and Ty are the Green’s functions due to the single source and double sources, res-
pectively, and Z' is the vertical coordinate of the source point. Let § and dj be the Fourier-Hankel
transform of s and dj, respectively. According to the Fourier—Hankel transform, §}' and d,’}}{ are obtained
from

2n 00
EZ’:/O d@/0 rH} (r,—0)s(r,0)dr (11)

2n 00
dy, = / do / rH" (r, —0)dy(r, 0) dr (12)
0 0

where k is the horizontal wavenumber, m is the circumferential order number and H]' is the horizontal
wavefunction defined by Eq. (A.4). It is not difficult to show the followings due to a property of the Bessel
functions:

=0 (Iml =2)

) (13)
dg =0 (B=12), (lm >3)

Zy
(5.5)
0}
(5,0)
o 0 o -~
€ T
(23 7() ) . .
(5,-7%)
e diplole along x; axis

O diplole along 4 axis

Fig. 2. Dipoles along x;- and x,-axes to calculate the derivative of Green’s function. A cylindrical coordinate system is used to indicate
the positions.
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Therefore, the solutions for Eq. (10) are expressed by the finite series for m that are as follows:

G(r) 2n Z / kH™(r,0)G" (z) dk

Z/ kH} (r,0) T} (z)dk (B =1,2)

m=—

where ka and T ;;’k are the Fourier—Hankel transform of G and T, respectively, which are obtained from the
following:

A, G"(z) = §'0(z — 2)

Tm ym ’ (15)
A Ty (z) = dgo(z—2) (f=1,2)
Note that o7, is the differential operator with components
(4203 + pw* — pk? —(4+ p)ko, 0
oLy = (A + p)ko. pd? + pw* — (A+2p)k? 0 (16)
0 0 ud? + pw* — pk?

By means of the Green’s function in the wavenumber domain, the solution for Eq. (15) is expressed as
follows:

G!'(z) = g,(z,2)8]
T (2) = gz 2)dj, (B=1,2)

where g,(z,2') is the Green’s function in the wavenumber domain for which the method of composition is
given in Appendix B. Substitution of Eq. (17) into Eq. (14) leads to the following representation of the
solutions of Eq. (10):

Z/ kH (r,0)g,(z,Z )8} dk

— (18)
Ty(r) 2nz/ kH (r,0)g,(z.2)djy, dk (B =1,2)

m==2

(17)

Appendix B shows the asymptotic property of the Green’s function in the wavenumber domain:
g.(2.2) = Ok *exp(—klz —2])) (2> 0), (k— oc) (19)

where O is the Landau notation, which ensures the convergence of the wavenumber integrals shown in
Eq. (18) for the case of z # 7.

3.2. Derivation of the complete eigenfunction expansion form of the Green’s function

The derivation of the complete eigenfunction expansion form of the Green’s function here relies on
properties of the Green’s function in the wavenumber domain. As shown in Appendix B, the permissible
sheets for the Green’s function in the wavenumber domain is the set of the complex wavenumbers such that

% = {k;Re(y,) > 0 and Re(v;) > 0} (20)
and the set of the wavenumbers for the branch cut is
oc = {k;Re(y;) = 0} U {k; Re(v;) = 0} (21)
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where
— 2 2
V=K = kL(l)

V) = Q/k2 _k;(l)

Note that k() and kr() are the wavenumbers for the P and S waves in the half space, respectively. Some
assumptions are imposed on the properties of the Green’s function in the wavenumber domain in this
paper. These assumptions are as follows:

(22)

Assumption 1. Let g, the set of wavenumbers for the poles of g,(z,z’). Then
o, C% (23)

and all poles are simple.

The set g, consists of two parts. One is the normal modes which can be found on the real axis of the
complex wavenumber plane. The other is the complex Rayleigh wave modes representing all the permissible
sheets. The presence of the complex Rayleigh wave modes is acknowledged by the work of Watson (1972),
in which the modes were found from numerical results to be distributed on a line close to the imaginary axis
of the complex wavenumber plane. The next assumption is for the number of the normal modes and the
complex Rayleigh wave modes.

Assumption 2. The number of normal modes is finite, while the complex Rayleigh wave modes are at most
countable.

The derivation of the complete eigenfunction form of the Green’s function due to a single source is
shown here. The treatment for the Green’s function due to a double source is similar, in that the details of
the derivation process are omitted. To obtain the result, replace the horizontal wavefunction with

;' (r,0) = 3V (r,0) + H{)(r,0)] (24)
where H"" (r,0) and H}"® (r,0) are the horizontal wavefunctions constituted by
7" (r,0) = HY (k) exp(im0) (= 1,2)

Note that H(7(-) is the Hankel function of order m. Given the properties of the Hankel function, the
following equations can be established:

/ KH!™ (r,0)g, (2, 2)8) dk = / kH" (r,0)g}(z,2)8) dk + 271 > Res[kH" (1, 0)g,(z, 28]
€ M

1+Cy ki€a* k=kj
J=%p1
(25)
/ KH (r,0)g, (2,28 dk = / KH' (r, 0)g}(z, 28! dk + / KH' (r, 0)gl (z, 28! dk
¢ Ny Ny+C3+M3
o m(2) N am
iy I,}:gf[ka (r,0)g(z,2)87]
kj€opr !
— 27 S Res[kH™ (r,0)g,(z,2)3" 26
k;pnk:k”[ v (r,0)g,(z,2)sy] (26)

where the integration paths Cy, M;, Cs, Ni, N, and M; are shown in Figs. 3 and 4, gy, is the set of wave-
numbers for the normal modes on the positive real axis, oy, is the set of wavenumbers of the complex
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Im(k)

([
complex poles

branch cut— P

\ Re(k)

Cs krq)
poles for the normal modes

M,

Fig. 3. Integral paths for M;, M5, C, and C,.

[ poles for the normal modes
-
0 l |
l .
Re(k)
/CSN2 k)
[
Y @ complex poles
branch cug g
M3
! --..........-..........---

Fig. 4. Integral paths for N;, N,, M3 and C;.

Rayleigh wave modes located in the first quadrant of the complex wavenumber plane and gy, is the set of
those in the fourth quadrant.

Note that integration paths C; and C; are necessary due to the singularity of the horizontal wave-
function. A brief sketch of the location of the wavenumbers for those modes is shown in Figs. 3 and 4. The
superscripts T and | for the Green’s function in the wavenumber domain refer to the direction of the wave
propagation in the half space. Namely, 7 denotes an up-going wave and | a down-going wave.

Next, replace k = —k’ for the integration paths of C; and M;. The properties of the Bessel functions
(McLachlan, 1961) shown below
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Ju(—kr) = exp(imn)J,, (kr)

. 27)
H\" (—kr) = exp(i(m + 1)n)H? (k) (for —n < Argk < 0)

and the following property of the Green’s function in the wavenumber domain clarified by the propagator
matrix method shown in Appendix B:

8i(z,7) = diag[l, —1, —1]g(z, ) diag[l, -1, —1] (28)
leads to the following equation:

/ KH'™ (r,0)g,(z,2)8) dk = — / KHP (r,0)gh(z.2)55 dk +2mi Y ReskH " (r,0)g,(z,2)3)]

€ Mr+Cy kj€ap k=k,
(29)

where the integration paths C, and M, are shown in Fig. 3.
The complete eigenfunction expansion form of the Green’s function is obtained by adding Egs. (26) and
(29). For this operation, let us define the set of wavenumbers g, such that

Opt = Opy Uy Uay, (30)

The set g, is the subset of the discrete spectrum o,. In addition, define the subset of the wavenumbers for
the branch cuts in the complex wavenumber plane located in positive real and negative imaginary axes. This
set is expressed by a.,, which is the subset of the continuous spectrum o.. A brief sketch of the location of
these spectra is shown in Fig. 5. Presence of the eigenfunctions can be observed for the wavenumbers of the
spectra. The eigenfunctions for the continuous spectrum are not in L, space and are therefore called im-
proper eigenfunctions. The following theorems (Touhei, 2002a) are also incorporated into the operation for
the addition of Egs. (26) and (29):

Theorem 1. Let k; € ap,. Then, the residue of the Green’s function in the wavenumber domain at wavenumber k;
is decomposed into the eigenfunction such that

1 _
Resg, (2.7) = 3 W (DB, "Wy ()T (k € o) Gl
-

where W, (2) is the eigenfunction and E, is the energy integral defined for the discrete spectrum oy,

Im(k)

e complex poles oy
[ J
®

ks
0 | R
! Re(k)
poles for the normal modes oy,

continuous spectrum o, Py

o complex poles oy

Fig. 5. Location of the spectra in the complex wavenumber plane.
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Theorem 2. The discontinuity of the Green's function in the wavenumber domain at the branch cuts can be
decomposed into the improper eigenfunction as follows:

gl(z,7) —g(z,7) = ni%‘l’k(z)E;I‘l’k(z/)T (k € a¢) (32)
where W, (z) is the improper eigenfunction and E;, is the energy integral defined for the continuous spectrum o..
The definition of the energy integral for the discrete spectrum is
E =k /0 " ¥, (2) K, W, (z) dz + /0 " 0. (2) Ks¥Wi(2)dz  (k € 7p) (33)
while that for the continuous spectrum is

Eo(|E] — k]) = k /0 T () KWL () d= + /0 o)KW () de 4 O(1) (G k € o) (34)

where K, and K; are denoted by

K, =diaglu (2+21) 4

0 -4 0

g (35)
K2 = u 0 0
0 0 0

The integration of Eq. (34) is for the improper eigenfunctions that are not in L, space, so that the Dirac
delta function is required to express the divergence of the integral. In addition, the Landau notation O(1) in
Eq. (34) represents a term which remains constant when £ approaches k. The energy integrals are symmetry
matrices (Touhei, 2002a) which ensures the reciprocity of the Green’s function.

The addition of Egs. (26) and (29) leads to the following:

G(r) = —% ST skH (r, 0) ¥, (2) E; Wi ()8

m=—1 keap
-1
1 m(t — / ~m
-2 > / KH™ (r, 0)%, (2) E; W4 ()" |dk| + By(r) (36)

where s(k) is the function

B 1 when k € g, U gy
st ={ 1) Smenkcon a7
7 takes 1 or 2 according to & as follows:
~ [2 when k€ oy, Uay
t= { 1 when k € oy, (38)

In addition B,(r) is due to the singularity of the horizontal wavefunction at £ = 0, which can be expressed
as

1

1
B =5 3 [ k05 dk (39)
2n m=—1 7 C2+C3
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A similar procedure is available for the Green’s function due to a double source. The result is as follows:

Tolr) = =5 3 ST sUOKHL (r, 0 () B ()

.2
1 m(t — NT ym
3 D0 [ 0B W) 0k + Bus() (40)
The effects of the singularity of the horizontal wavefunction at k = 0 for Eq. (40) is expressed by Bqs(r)
which is as follows:
1 2 m ym
Bulr) =5 > [ k0.2 dk (41)
T Cr+C5

m=-—2

3.3. Singularity of the horizontal wavefunction

In this section, the effects of the singularity of the horizontal wavefunction B,(r) and Bys(r) shown in
Egs. (39) and (41) are clarified. The singularity around & ~ 0 of the Hankel function used in the horizontal
wavefunction becomes stronger as m increases. Assuming that m > 1, the principal part of the singularity
of the horizontal wavefunction at £ = 0 becomes

. 1 0 0
HZQ) (r, g)kwowieim”(kr)‘m [0 —m(kr)™! im(kr)l} (42)
- T 0 im(kr)™" m(kr)™

On the other hand, in the case that m = 1, 5}’ for the Green’s function due to the single source is

0 0 0
= [o 1/2 (-1/2)1] (43)
0 (-1/2)i -1/2

Therefore, according to Egs. (42) and (43), the integrand of Eq. (39) shows k! singularity around k ~ 0 in
the case that m = 1. To evaluate the singularity, the Green’s function in the wavenumber domain around
k ~ 0 must be investigated. The operator .o/, for the Green’s function in the wavenumber domain defined
in Eq. (16) has the following property:

(2 +2p)0% + pr? 0 0
R4 e 0 §d? + pa? 0 (44)
- 0 0 ud? + pa?
Therefore, the Green’s function in the wavenumber domain shows
0(z,7) — diagla(z,2), Bz,2), Bz, 7)) (45)

where

(4200 + po)a(z,7) = —5(z 2

(W22 + po?)B(z,2) = ~o(z — 2)

A property of the integrand of Eq. (39) can now be summarized as follows by means of Egs. (42), (43) and
(45):
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00 0
KH' (r,0)g,(z,2)8' — |0 0 0 (46)
o 0 0

Therefore, the singularity of k' due to the horizontal wavefunction does not affect the integration when
m = 1. When m< — 1, a property of the Hankel function
HO() = (=1)"H()

—m

ensures the possibility of the usage of the discussion presented here. It is clear that the singularity of k! is
not an issue when m = 0. A similar procedure is possible for the Green’s function due to a double source.
The following theorem is a summary of the above discussion and the Green’s function is found to be simply
expressed in terms of only the normal, complex and improper modes.

Theorem 3. The singularity of the horizontal wavefunction at k =0 does not have any effect on Green’s
function. Namely,

1 1
B,(r) = — / kH (v,0)g,(z,2)8)'dk = 0
M= D0 [ HHEC 005
1 & .
By(r) = — / kH (v,0)g,.(z,2)d}, dk = 0
dﬂ() 27tm:2—2 cricy k( )k( )/;k

3.4. Properties of the complex Rayleigh wave modes

The fact that the imaginary part of the whole of the complex Rayleigh wave modes for the Green’s
function is zero has been shown (Touhei, 2002a). However, the proof for this was complicated. In this
section, a simple proof for the fact is presented. Here, { is used for the complex variable and the superscript
x for the complex variable indicates the complex conjugate. The following lemma is required for the
discussion:

Lemma 1. There is a relationship between the first and second kind of Hankel function for the complex
variables, which can be written as

() = HD QO

The proof was given in the article (Touhei, 2002a).
In addition, the following relationship for the first kind of the Bessel functions:

In(C) = Un(OF

is also required for the discussion. One property of the horizontal wavefunctions, §;' and tAiZ}{ based on the
above equations is

Hl:*m(l)(lﬂ 0) _ (—l)m[HZI(Z)(I”, 0)]*

s = (1B (47)
dy = (-1)"dp)

In addition, note that

k €op <=k €0,
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and if W, (z) is the eigenfunction for the complex Rayleigh wave mode for the wavenumber £, then (W, (z))"
is also the eigenfunction for the complex Rayleigh wave mode for the wavenumber £*. As a result,
one property of the energy integral for the complex Rayleigh wave mode is such that

Ep = (E)" (k€ op)
The following theorem can now be presented:

Theorem 4. The imaginary part of the whole of the complex Rayleigh wave modes in the Green’s function is
zero.

Proof. Suppose that & € o,,;. According to Eq. (36), superposition of the complex Rayleigh wave modes of
the complex conjugate each other with the different signs of m leads to
(—i/OH (r, Wi E Wi (2)'5) — (/4 H (1, 0)We (2 E Wi (2)'5:
= (—i/HH (r, Wi (D) E Wi (28 — (—i/4)[H (r, 0) Wi () B W(2) 87T (48)

from which it is found that the imaginary part is zero. Therefore, the imaginary part of the whole complex
Rayleigh wave mode is zero. A similar procedure is possible for the Green’s function due to a double
source. [J

This theorem is valid for an arbitrary excitation frequency of real value. Therefore, the complex Ray-
leigh wave modes exhibit non-propagating waves, namely, standing waves, since the imaginary part of the
wavefunction in the frequency domain is necessary to express a phase during wave propagation.

3.5. The Green’s function for traction

It is now possible for us to transform the Green’s function in the cylindrical coordinate system into that
in a cartesian coordinate system. The transformation of the displacement vector at the field point becomes

up U,
u, | =R(O)| u, (49)
usz Ug

where R(0) denotes

0 cosf —sinf
R(O)=1[0 sinf cosO (50)
1 0 0

Likewise, the transformation of the force vector at the source point from the cartesian coordinate system
into the cylindrical coordinate system is

S . Ji
S| =RO) | f2 (51)
Jo fi

in case the horizontal coordinate of the source point is the origin of the coordinate system. Let the Green’s
function for displacement, namely, due to a single source, in the cartesian coordinate system be denoted by
U(r,¥), where ¥ is the source point in which the horizontal coordinate are not the origin of the global
coordinate system. The components of the field and source points in terms of the cartesian coordinate
system are expressed by
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r= (X17X27x3)

/ / / / (52)
r= (xl’x2>x3)
Now, based on Egs. (49) and (51), the Green’s function can be expressed as follows:
-7 Z Z k¢k x/lvxz _x/27x3)E1;IS;cn(x/3)
mf—l keops
Z / Kt — 1,32 — Xy, ) B S ()l (53)
where ¢}’ and S}’ are defined by
o (x) — x|, X2 — X5, x3) = ROH! (r,0)¥:(x3) (r=12) (54)
7 (xh) = Wi (x,) §R(0)
Note that » and 0 in Eq. (54) are
= \/(xl — x’l)2 + (= x’2)2 (55)
0=tan ! 22 (56)

X; — X}
Derivation of the Green’s function for traction is almost the same. The result, which is based on T}, is

r,1 Z Z k¢k xll7x1 _xl27x3)E1:1D/T(xg)

m—72 keap

3 [ B D (57)

m=—

where T'(r,#) is the Green’s function for traction and the components of D}’ are obtained from
Dy (x¥3)],p = Anpl ST (¥3)],,, + 1y [S7 (33)] g + 1, [ST (5)1,, (58)

where [ |, denotes the components of the matrix, n describes the normal vector used to define the traction
and the summation convention is applied to Eq. (58). In addition,

Sj = Wil) i RO)T (f=1,2)
Sp =Y HRO) (B=3)

where W, (x}) is the derivative of the eigenfunction.

(59)

4. Integral equation method for the scattering problem
Let us consider the scattering problem, the concept of which is shown in Fig. 1. The displacement field
outside the scattering object can be decomposed into the following form:
u = ug + us (60)

where ur is the free field response of the layered medium due to a plane incident wave and ug is the
scattering wave radiating from the scattering object. In the first part of this section, a brief overview for the
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free field response is presented. After that, a boundary integral equation for the scattering problem is
discussed.

To obtain the free field response, let the displacement field be expressed by the three scalar potentials as
shown in Appendix A,

up = Vo +V x Vx (Ye.) +V x (ye:) (61)
The scalar potentials for the plane wave are in the forms of
@(r) = exp(—i(kix| + kax2)) @y (x3)
W(r) = exp(—ilkix: + koxa) Wy, (x3) (62)
2(r) = exp(—i(kixy + kox2)) 7, (x3)
where @, l/;k and j, satisfy the following:

(03 + ki — k)i (x3) = 0
(03 + k7 — K )y (x3) = 0 (63)
(03 + k7 — k)74 (x3) = 0

where k* = k7 + k3. Substitution of Eq. (62) into Eq. (61) leads to the following:

ur (X1, X2,%3) FOrhi(x1,x2) 1 02h(x1,x2) 0 Uiy (2)
ups (x1,%2,%3) | = %62hk(x17x2) —%alhk(xl,xz) 0 tisu(2) (64)
MF3(X17X2,X3) 0 0 hk(x17x2) flkz(Z
where ug; (j = 1,2,3) is the component of ur and
hk(xl,xz) = exp(—i(klxl + ngg)) (65)

Note that (@, disH, ﬁkz)T is the wave function in the wavenumber domain satisfying

ﬁkz
A | iy | =0 (66)
ﬁkSH

The method for composing the solution for Eq. (66) is possible by means of the propagator matrix method
shown in Appendix B.

To obtain the boundary integral equation, the definition of the radiation condition for an elastic layered
half space is necessary. However, it would be very difficult to present the radiation condition for a gene-
ralized elastic layered wave field as in the form of the Sommerfeld radiation condition. Therefore, instead of
presenting such conditions, we define the radiation solution of an elastic layered half space in the form:

Definition 1. The radiation solution of an elastic layered half space from a scattering object is the solution
expressed by boundary values and the Green’s functions such that

u(r) = _/1‘ T(r,/\u(r)dl(¥) + /1 G(r,¥)z(¥)dI(¥) (67)
where

reR* xR\ (I'uQ) (68)
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In addition, we introduce the following assumption:

Assumption 3. The scattering wave shown in Eq. (60) is the radiation solution. Namely,
us(r) = —/ T, us(rYdL(¥) + / G(r,r)ts(¥)dI(¥) (69)
r r
Let us investigate one property of the definition of the radiation solution. Assume that L be the operator
for the elastic wave propagation. Namely,
L=+ VY- +uV?+ po’

The definition of the Green’s function is

LU(r,v¥)=—-16(r—7) (70)
Reciprocity of the Green’s function

Ur,¥)=U®F,r)" (71)
ensures the following:

LU, ¥ =-15(r—7r) (72)

The reciprocity of the Green function, which can be captured from its eigenfunction expansion form with
the symmetry of the energy integrals, describes the property of the exchange of the source and field points.
At this point, let B be the intersection of a large sphere including the scattering object and the layered wave
field and I'y be its boundary. It is possible to derive the following Green’s identity for the operator L by
integration by parts:

[ )" Latr) ~ (L ) )02 0) = [ ()'ele) = () a0 0T ) (73)
fou I'+I'g
where u and u* are displacement fields, T and t* are the corresponding traction vectors and

Q =B\ (QUT) (74)

Note that the direction of the normal vector at the boundary to define the traction is outward with respect
to °. Now, let

w(r)=U®Fr" (75)
and

Lu(r)=0 (76)
Then, the following integral equation is derived from Eq. (72) in the case ¥ € Q"

u(r') = — / T, Nu(r)dl(r) + [ U, P dr @) (77)

I'+I'y I'+I'y

Assume that u in Eq. (77) be the radiation solution. Then, the definition of the radiation solution requires

/ T(r,¥)u(r)dl(¥) —/ U(r,¥)e(¥)dIr'(¥) — 0 (a — o0) (78)

I'y I'y

for the case of r € Q°, where a denotes the radius of the sphere.
For the free field response, the Green’s identity is applied to the region of the scattering object €,

/Q (1) Lu(r) — [Lu (r)]"u()] Q(r) = / (1) "e(r) — 7 (1) ()] TP (79)

r
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and the following integral equation is established:

—/T(rr)up /Grr e (¥)dr(¥) =0 (80)
r
where r € R> x R, \ (QUT). Addition of Egs. (69) and (80) leads to the following:
u(r) +/ T(r,/)u(¥)dr(') = / U(r,¥)e(¥) AT (F) + ug(r), r€R* xR, \ (QUT) (81)
r r

At this point, let r approach the boundary of the scattering object. Then, the following boundary integral
equation is established:

cu(r) + /r T(r,u(r)dI'(¥) = /r U(r,r)t(¥) AT (¥) +up(r) (rel) (82)

where ¢ is the coefficient matrix of the free term of the boundary integral equation.
For the inclusion of the scattering object, the boundary integral equation is as follows:

D (r)u (r) +/ T (r, ¥ )u" / UY(r, /) (#)dI () (rel) (83)

where the superscript (i) denotes the variable related to the inclusion of the scattering object. In addition,
the direction of the normal vector to define the traction vector t'”) is away from the scattering object.
According to standard texts on the boundary element method (for example, Brebbia and Walker, 1980),
the components of the Green’s functions for inclusion can be written as follows:

; 0 N 1 Or or N
(@) A (1) (D) (07 (D32 5L _ oD (@) 7 (D2 L)
U“ﬁ(r’r)_4nu(i> (¢1 (r) + @, (r) — (7 [cp') ®5 (”))"'475# ax ax ( D3 (r) + (cf' [e)) ) @, (”))
(84)

where r is the distance between the field and source points, Cr and CL are the S and P wave velocities,
P (i _
respectively and @;” (j =1,2,3, p=T,L) is the wavefunction given by

q>(P ) = exp( rlkp 7)

1 i\ exp(—ik?r) 85

q)gp)(r):_(uTerT)ip (5
ky ' rr k' r

o (r) = oV (r) + 300 (r) (p=T,L)

where k(Ti) and kf) are the wavenumbers for the S and P waves for the inclusion, respectively. The Green’s
function for the traction is obtained from the following identity:

0 oul) (Ul auy
Ty(rv) = oy, o + a—x/ﬁ—# o n, (86)

bl

It is a simple process to couple the boundary integral equations (82) and (83) by means of Eq. (7). As a
result, the scattering wave field can be analyzed.

Once the boundary values are obtained by boundary element analysis, the scattering waves are deter-
mined by means of Eq. (82):

us(r):—/FT(rr /Urr dr(r) (87)
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Substituting Eqs. (53) and (57) into (87) and performing the boundary integration leads to the following
representation of scattering waves:

u(r) = 3y + / y () |d (88)

keap

where y, is denoted by
.2
1 m(T / / — n / / /
7ir) =5 3 s [ K7 = xlm = s B DF () AT ()
m=-2
i o m(t) / / —1 gm/_t / /
2 s(k) Fk¢k (x1 — Xy, x50 — x5, x3) E, 7 S (x3)w(r') AT (') (89)

m=—1

Eq. (88) shows that the scattering waves are decomposed into wavefunctions on the spectra. As shown
in the following examples, the decomposition of the scattering waves will aid in the understanding of
their properties.

5. Numerical examples

A computer program based on the formulation presented here was developed for the analysis of nu-
merical examples. The propagator matrix method was employed in the program to obtain the eigenfunc-
tions that constitute the Green’s functions for a multi-layered medium. The examples shown below are for
the verification of the developed program as well as to investigate radiation of the scattering waves from an
object in a layered medium.

Fig. 6 shows the analyzed model, in which a spheroidal scattering object is embedded in a two-layered
elastic half space and a plane incident SV wave is considered. The amplitude of the incident wave is
normalized such that the free field response in the wavenumber domain due to the incident wave satisfies

i |* + Jite* =1 [em’] (90)

at the free boundary, where 4y, and . are shown in Eq. (64). The normalization means that the unit of the
displacements shown below is [cm].

Y
p =2.0 g/cm?, ey = 1.0 km/s, ¢ = 2.0km/s
p =2.0 g/ecm®, cr = 1.5 km/s, ¢1, = 3.0km/s

z=4km( D j:km

plane incident wave (SV wave)

z =0 km
Z=lkn1

z

Fig. 6. Analyzed model for the scattering problem. The scattering object is in a two-layered elastic half space.
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As shown in the analyzed model, a cartesian coordinate system is employed in this section. The fre-
quency of the analysis is 1.0 Hz, and the direction vector of the plane incident SV wave is

a=(1,1,-1) 91)

in terms of the coordinate system shown in Fig. 6. The mass density of the layered medium is 2.0 gcm™3

both for the surface layer and the half space. The S and P wave velocities for the surface layer are 1.0 and
2.0 kms~!, respectively, while those for the half space are 1.5 and 3.0 kms™', respectively. The depth of the
surface layer is 1.0 km. The boundary elements for the spheroidal object are shown in Fig. 7.

Fig. 8 shows the location of the wavenumbers for the complex Rayleigh wave modes in the first quadrant
of the complex wavenumber plane for the analyzed model at a frequency of 1.0 Hz. The wavenumbers are
obtained from the following Newton—Raphson scheme:

F(k;)

kjs1 :kj_F'(kj) =12..) (92)
F'(k;) = 2%1 7{ (:_(’2)2 dk (93)

where k; is an approximate wavenumber for the complex Rayleigh wave mode and F(k) is the characteristic
function for the wave field. The contour integral for Eq. (93) is performed for the small circle around k;. As
can be seen in Fig. 8, the complex Rayleigh wave modes distribute almost linearly in the semi-logarithmic
graph of the complex wavenumber plane. The complex Rayleigh wave modes are shown to approximate
1500 km~' at their absolute values. These high absolute values are required for the calculation of the
Green’s functions for cases in which the horizontal range of the field and source points are very small,
namely the horizontal range is approximately 0.02 km.

Fig. 7. Boundary elements for the scattering object.
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Fig. 8. Location of the wavenumbers for the complex Rayleigh wave modes in the first quadrant of the complex wavenumber plane.

First, let the properties for the inclusion of the scattering object be identical to those of the surrounding,
so that the present solution for the wave field becomes a free field response, which can be calculated using
the propagator matrix method. Figs. 9 and 10 show comparisons of the displacements of the free field
responses and the present solutions along the y-axis on the free surface. According to the figures, the results
show almost complete agreement, which validates the accuracy of the proposed method. Therefore, the
complete eigenfunction expansion form of the Green’s functions for displacement and traction are appli-
cable to the boundary element analysis.

Next, let the inclusion of the object be softer. Here, the S and P wave velocities for inclusion are 0.75 and
1.5 kms™', respectively, and the mass density is 2.0 gcm~>. Fig. 11 shows the distribution of the dis-
placements of the wave field at the free surface. In addition, Figs. 12 and 13 show the free field response and
propagation of the scattering wave at the free surface, respectively. Note that the result in Fig. 11 is the sum
of the results in Figs. 12 and 13. In other words, the differences between Figs. 11 and 12 are due to the
effects of the scattering wave. The arrow shown in the figures is the projection of the direction of the
incident wave onto the x—y plane.

[ T T LI I T T LI I T LI T T T LI
L ——— present solution 4
e 1 +  free field response —
(&) - -
% - i
8 O _
g | i
D — -
-1 . PRI T A T T T T T T A MO N i

-10 -5 0 5 10

Horizontal range (y axis)[km]

Fig. 9. Comparison of displacements in x-direction at the surface along y-coordinate.
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Fig. 10. Comparison of displacements in z-direction at the surface along y-coordinate.
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Fig. 11. Total scattering wave field at the free surface.
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Fig. 12. Free field response at the free surface.
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Fig. 13. Radiation of the scattering wave at the free surface.

As shown in Fig. 11, the effects of the scattering wave can be seen mostly above the scattering object. In
the range of the far field of the object, the present solution and the free field response tend to agree. Ac-
cording to Fig. 13, the scattering waves propagate approximately isotropically around the scattering object.
Furthermore, the amplitudes of the displacement in the backward side of the scattering object are larger
than those in the forward side. The wavelengths of the scattering wave are shorter on the backward side
of the object than those on the forward side. Relatively large amplitudes for the vertical displacement can
be found in the immediate vicinity of the scattering object.

At this point, let us investigate the properties of the scattering wave in terms of the modes for the discrete
and continuous spectra. Here, the scattering waves are decomposed into the modes based on Eq. (89). Note
that the wavenumber for the fundamental Rayleigh wave mode is 6.69 km~' and that for the first higher
mode is 4.68 km~!. In addition, the wavenumber for the fundamental Love wave mode is 6.12 km~' and
that for the first higher mode is 4.79 km™! at a frequency of 1.0 Hz. The wavenumber of the S wave in the
half space is 4.19 km~!.

Fig. 14 is the propagation of the fundamental Rayleigh wave mode decomposed from the scattering
waves. As can be seen in Fig. 14, the fundamental Rayleigh wave mode clearly propagates in the forward
direction. For the lateral side of the scattering object, the amplitudes of the mode are very small. The
displacement amplitudes in the backward side of the object are relatively large, while the wave forms in this
area are not clear when compared with the propagation of the mode in the forward direction.

Fig. 15 shows the distribution of the amplitudes of the complex Rayleigh wave mode for
k= (1.33 4 3.41i) km~!. As shown in the figure, relatively large displacement amplitudes can be seen in the
immediate vicinity of the scattering object, and the amplitudes reduce rapidly towards the far field. The
distribution of displacement exhibits directionality. Namely, the displacements can be seen in the forward
and backward side of the scattering object. Here, displacements in the vertical direction are outstanding.

Fig. 16 shows the propagation of the fundamental Love wave mode decomposed from the scattering
waves. The propagation shows a rotational motion around the object. In addition, the displacement am-
plitudes are found to be very small. The reason for the very small displacement amplitudes is that the Love
wave is caused by SH waves which are not included in the free field response. The free field response here
is constituted by the P and SV waves.

Fig. 17 shows the propagation of the mode for the continuous spectrum. The wavenumber for the mode
is 4.19 km™!. This is the wavenumber of the S wave for the half space. According to Fig. 17, the scattering
waves propagate in the forward and backward direction with relatively larger displacement amplitudes
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Fig. 14. Radiation of the fundamental Rayleigh wave mode decomposed from the scattering wave.
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Fig. 16. Radiation of the fundamental Love wave mode decomposed from the scattering wave.
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Fig. 17. Radiation of the scattering wave for the continuous spectrum. The wavenumber is k = 4.19 km™'.
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Fig. 18. Radiation of the scattering wave for the continuous spectrum. The wavenumber is £ = 0.0 km~'.

compared to those in the lateral side direction. The direction of the displacement is found to be mostly
vertical. In addition, the scattering wave spreading to the forward side of the object covers a wider area
compared to that spreading to the backward side. Fig. 18 shows the propagation of the mode for the
continuous spectrum for £ = 0.0 km~'. It can be seen that the displacement amplitudes distribute iso-
tropically around the scattering object. The direction of the displacement is also prominent in the vertical
direction. The amplitudes decrease monotonously with respect to distance from the object.

According to the properties of the propagation of the modes, the Rayleigh wave mode is found to have
directionality during its propagation, while the modes for the continuous spectrum do not have strong
directionality. Therefore, the continuous spectrum is more significant in the propagation of the scattering
wave shown in Fig. 13.

Fig. 19 shows the spectral amplitude of the scattering wave at a field point of x = 5 km, y = 5 km at the
free surface. Here, the absolute values of y, shown in Eq. (89) are plotted. The vertical lines in the figure
denote the amplitude of the normal modes, while the continuous line denotes the amplitude for the con-
tinuous spectrum. Note that the negative region of the horizontal axis in the figure denotes the pure
imaginary negative wavenumber. The unit of the spectral amplitude for the discrete spectrum is [cm] and
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Fig. 19. Spectral structure of the scattering wave at the free surface of x = 5 km and y = 5 km. The units of the spectral amplitude for
the discrete spectrum are [cm] and that for the continuous spectrum are [cm km].

that for the continuous spectrum is [cm km]. It is found from Fig. 19 that the amplitudes of the higher
modes for the discrete spectrum are larger than those of the lower modes. The reason for this is that the
wavenumber for the plane incident wave is in the continuous spectrum, which is closer to the higher modes
for the discrete spectrum. As for the spectral amplitude of the continuous spectrum, the amplitude is higher
in the positive real wavenumber range than that in the negative pure imaginary wavenumber range. The
reason for this is that the wavenumber for the plane incident wave is in the continuous spectrum for the
positive real wavenumber and the horizontal wavefunction decreases rapidly in the pure imaginary negative
wavenumber range due to the properties of the Hankel function.

One of the advantages of the present Green’s function is that it simplifies the formulation for the
boundary integral equation method. The reason for this is that complicated information for the layered
structure can be imposed on the eigenfunctions for the spectra. The present Green’s function also enables us
to decompose scattering waves into the modes for the spectra, which helps in understanding their pro-
perties. Furthermore, accurate values can be calculated by means of the Green’s function, even in the case
that the field and source points are close to each other and when the points are located in the area far from
the free surface. The main disadvantage of the present Green’s function is that it requires significant
processing time when the horizontal distance between the field and source points are very small. This is due
to the slow convergence of the spectral integral. The complex Rayleigh wave modes required by the present
Green’s function also complicate the usage, since it is an elaborate process to find out and to identify them.

6. Conclusions

A formulation and numerical examples for the analysis of scattering waves caused by interaction between
an object and a plane incident wave in an elastic layered half space were presented in this paper. For the
analysis, the complete eigenfunction expansion form of the Green’s function and the boundary integral
equation method were employed. At first, the complete eigenfunction expansion form of the Green’s functions
due to single and double sources were derived. Based on the Green’s functions, the singularity of the hori-
zontal wavefunction for the eigenfunction expansion form of the Green’s functions were investigated. The
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result clarified that the singularity did not have any effects on the Green’s functions. Namely, the Green’s
functions were simply expressed by the summation and integration of the eigenfunctions for the discrete and
continuous spectra. Next, a method for the application of the Green’s functions to the boundary integral
equation method as well as several numerical results were shown. According to the numerical results, the
complete eigenfunction expansion form of the Green’s function were applicable to the boundary element
analysis. Furthermore, a spectral structure as well as the radiation of the scattering wave obtained from the
present method were found to be useful to explain the properties of the scattering waves. For example, the
propagation of the fundamental Rayleigh wave mode decomposed from the scattering wave exhibited strong
directionality when compared to that for the continuous spectrum. The scattering wave propagated iso-
tropically around the object, so that the components of the continuous spectrum were more significant
for the scattering wave than those of the discrete spectrum.

Appendix A. Fourier—Hankel transform for an elastic layered wave field

We investigate here a Fourier—Hankel transform for a vector field of an elastic layered medium. The
derivation of the transform is presented formally. In the following, the infinite series for m can be seen,
however, it can be reduced into the finite sum in the case that the point source is applied. The problem of
the convergence of the wavenumber integral is also discussed in the main text of this article. Following Aki
and Richards (1980), three scalar potentials ¢, i/ and y are employed to represent a displacement field for
an elastic layered wave medium

u=Vop+V xVxWe)+V x(ye) (A.1)

where e, is the base vector for the vertical coordinate. Note that ¢, i and y are for the P, SV and SH waves,
respectively. Let the scalar potentials be expressed in the following form:

o(r) :% i exp(im0) /0 mk]m(kr)@”(z)dk
W(r) :% i exp(im0) /0 OOkJm(kr) J(z) dk (A.2)

T2

m=—0o0

7(r) : i exp(im0) /Ooold,,,(kr)ﬁ’(z)dk

where m is the circumferential order number, k& is the wavenumber and J,, is the first kind of the Bessel
function of the order m. Substituting Eq. (A.2) into Eq. (A.1) leads to the following:

1 o0 o0 . R

u(r) =5 m;m /O kH} (r, 0)a (z) dk (A3)

where H}' is called here the horizontal wavefunction with components
Y (r,0) 0 0
HI(n0)=| 0 18%(,0)  Lo7(0) (A4)
0 L0,y (r,0) —10,Y"(r,0)

where

Y (r,0) = Ju(kr) exp(im0) (A.S5)

Note that the superscript m does not denote the power and 0 is a partial differential operator with respect to
the parameter given by the subscript. In addition, the array of the components of & are given by
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i} (2) 0.97(2) + K (2)
i'(z) = |y (2) | | = | k¢P(z) + koy7 (2) (A.6)
i (2) k3 (z)

According to Egs. (A.4) and (A.6), the array of the components of u in Eq. (A.3) becomes as follows:
w= (0, w, up) (A7)
There is a relationship between the components of u and &' as follows:
ul' = / kT, (kr)al, dk
0
u' — iy = / kT (k) (2, + 1dry, ) dk (A.8)
0

o = = [ s )+ i)
0

where

2n
W = /0 u;exp(—im0)do  (j =r,0,z) (A9)

Therefore, due to the properties of the Hankel transform, the following equation can be established:

w'(z) = /0271 d@/oDC rH} (r, —0)u(r)dr (A.10)

In this paper, Eq. (A.10) is used for the Fourier—Hankel transform and Eq. (A.3) for the inverse Fourier—
Hankel transform for an elastic transform.

Appendix B. Some properties of the Green’s function in the wavenumber domain

This appendix investigates some of the properties of the Green’s function in the wavenumber domain
together with the asymptotic behaviour in the case that £ — oo. The investigation strongly depends on the
propagator matrix method which is used for composing the Green’s function in the wavenumber domain.
Under these circumstances, a brief explanation of the propagator matrix method is presented. In the fol-
lowing discussion, the layer index / is for the half space.

First of all, consider a layer bounded by /; <z < h;;; and a homogeneous solution in the layer. The
solution for the equation is given by

Ail'2) =0 (b <z<hy) (B.1)

where the differential operator is given by Eq. (16), 4; and k;;, are the vertical coordinates of the layer
interfaces and

w!(z) = ity ay ag)" (B.2)
The local vertical coordinate of the layer {;

Z:hj-i-Cj (O<Cj<hj+1 —hj) (B3)
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is employed to express the solution for Eq. (B.1) such that
= _Veﬂ.jc"Al(/') + VewlfAzm + kze*"./;/‘A3U) + kze"fgfm(/)
@ = ke U Ay + kel Ay — vike Y Ay — vike' Y Ay (B.4)
iy, = ke_v";’A5U> + ke""g-fAﬁ(,)

where 4;;) (i = 1-6) are the coefficients for the solution for the jth layer and

=R ki (B.5)
Vj = Q/kz - k%‘(/)

Note that &;(;) and kr(;) are the wavenumbers for the P and S waves in the layer. The components of the
traction vector due to displacements &7, #); and i, are obtained from the following:

5 m
pg/’c Uy

A _ nm
p rk - ‘@k uzk (B6)
Phi gy

where 2, is the operator defined by

(A+2wo. -4k O
Py = k pd. 0 (B.7)
0 0 uo.
Define the states vector and coefficient vector for the layer such that
(Y(8)), = @50, a5 (&) B (8 B () i (6 B () (B.8)
(4), = (A1), A2, A3, Aap; Asty, Asip)” (B.9)

Then, the states vector (¥;((;)); can be expressed in the form
(%(5)); = [B;[A(E)],(4); (B.10)

where the components of the matrix [B]; and [A((;)] are

k 2 vk vk 0 0
2 2 2 2 _ 2. 2y
B8] = u(k® + vj) u(k* + vj) 22,uk \;j 22,uk vj2 0 0 (B.11)
/ —2uyk 2upk p(v; + Kk u(vi +kk 0 0
0 0 0 0 k k
0 0 0 0 —uwvik  pvik
[A(C))], = diaglexp(—y,¢;)  exp(y,{;) exp(—v,{;) exp(v,{;) exp(—v,{;) exp(v,(;)] (B.12)

Let the states vector at {; = 0 be denoted by (Y), and that at {; = h;;; — h; by (Y),,,, where jand j + 1 are
the layer interface number for the upper and lower boundary for the layer. Then, the relationship of the
states vectors between (Y); and (Y),,, becomes as follows:

(V)1 = [T)(Y); (B.13)
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where [7},,] is the propagator matrix defined by

(71, = [B,[A(hy1 — )], B, (B.14)

J

Note that the propagator matrix has the following property:

k k 1 1 0 O
k k1 1 0 O
Bk k 0 0
[7}+1J] =0 oKk ko 0 exp(k(thrl - hj)) (k - OO) (BIS)
0 0 0 0 k£ &k
0 0 0 0 K K

where O is the Landau notation and [7,,,] is the even function for v; and 7,. Therefore, [7},,,] does not
depend on the branches for v; and ;.
Now, we are in a stage where it is possible to compose the solution for the equation

Al (2,7) = —f"0(z—2) (b <z < 0) (B.16)

where /4, is the vertical coordinate of the free surface and f;’” is the amplitude of the force vector acting
at z =7 whose components are expressed by

rm Fm Fm Fm\T

K=U% i T (B.17)
The free boundary condition, layer interface conditions and radiation conditions are imposed on Eq.
(B.16). The conditions at z =z’ due to the source term for #]' are expressed as

u'(Z +e)=u(Z —e¢72)

[?kilzl (Z, Z/)]z’+e _ _j/‘{m

Z'—€

(B.18)

According to Eq. (B.18) and the layer interface conditions, the relationship between the states vector at the
free surface and the coefficient vector for the half space becomes as follows:

(4), = [B) [Tl [Trra-a) -+ [Boa) (V) = [Toact)[Tr1-2) - [Tri1,) (2), (B.19)

where the subscript 1 for the states vector indicates the free boundary, s and / for those are the layer
interface where the force is applied and that between the surface layers and the half space, respectively,
and the components of the vector (Z), are

(2,=(0 o fr fz o0 f,;’,j)T (B.20)

In addition, the components of the vectors (Y), and (4), are as follows due to the free boundary and
radiation conditions:

= (g @ 0 0 @ o)

(B.21)
(A),=(A, 0 A3 0 A5 0)"

The unknown quantities @7, a7}, i}, 4;, 43, 4s are uniquely determined by Eq. (B.19) unless £ is in the point
spectrum. To show this, express the matrices such that

€)= 1B -]+ [ (B.22)

D] = [B]; [Tl Tr-14-2] -+ [T
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Then, the solution for Eq. (B.16) at the free surface can be expressed as

~m / M (O’Z,) m
W'0,7) = ﬁ f (B.23)
where
€ Cxn Cps
F(k) = det C41 C4p Cys (B24)

Co1 Ce2  Co5

c

€1 Cxn (s dys  dhy d
Mk(O,Z/) = | Ca1 Ca Cys dys  das  dys (B-25)
Co1 Ce2 Co5 dss  des  des

where ¢;; and d;; are the components for the matrices [C] and [D] and [ |° denotes the cofactor of the matrix.

Based on Eq. (B.23), the solution for an arbitrary depth z can be composed by multiplying a propagator

matrix connecting the free boundary and the layer interface boundary at the depth of the field point. As a

result, it is possible to give the Green’s function in the wavenumber domain in the following form:
Mk(Z7Zl)

g.(z,7) = W (B.26)

Note that F(k) is the characteristic function whose roots
F(k)=0 (B.27)

constitute the point spectrum for the Green’s function in the wavenumber domain.

Now, the asymptotic behaviour of the Green’s function in the wavenumber domain in the case that
k — oo can be evaluated by means of Eq. (B.15) and the procedure for composing the Green’s function. It is
expressed as follows:

2.(z,2) =O(k "exp(—klz —Z|)) k— oo (B.28)

where o > 0 is due to multiplications of the propagator matrices.

The procedure for composing the Green’s function in the wavenumber domain clarifies that the branch
cuts in the complex wavenumber plane are required for y, and v,. Due to the requirements for the radiation
conditions, the permissible sheets for the complex wavenumber plane have to satisfy Re(y,) >0 and
Re(v;) > 0. Note that the process for composing the Green’s function in the wavenumber domain clarifies
following property

g (z,Z)=diag]l -1 —1]g,(z,Z)diag[l -1 —1] (B.29)
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